Expectation-Maximization

* EM is an elegant and powerful method for MLE
problems with latent variables

e Main idea: model parameters and latent variables
are estimated iteratively, where average over the
latent variables (expectation)

e A typical example application of EM is the
Gaussian Mixture model (GMM)

e However, EM has many other applications
e First, we consider EM for GMMs
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Expectation-Maximization for GMM

e First, we define the responsibilities:

Zznk =1

k
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Expectation-Maximization for GMM

e First, we define the responsibilities:
V(2nk) = P(2nk = 1| x5)

- WkN(Xn ‘ Hi > Zk)
T K
Zj:l miN (xy, | 7% )
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Expectation-Maximization for GMM

e First, we define the responsibilities:
V(2nk) = P(2nk = 1| x5)

- THCN(XTL ‘ Hi > Zk)
T K
Zj:l miN (xy, | 7% )

* Next, we derive the log-likelihood wrt. to u,, :

Olog p(X | 7, u, )

!
=0
Oy,
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Expectation-Maximization for GMM

e First, we define the responsibilities:
V(2nk) = P(2nk = 1| x5)

- WkN(X’fl ‘ Hi > Zk)
T K
Zj:1 miN (xy, | 7% )

* Next, we derive the log-likelihood wrt. to u,, :
Olog p(X | 7, p, X3)
Oy,

and we obtain: B S A (2nk)Xn
Hi = N
S:n—l W(an)

|
=0
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Expectation-Maximization for GMM

e \We can do the same for the covariances:

Ologp(X | 7, p, X)

!
=0
0>}

and we obtain:
y:fj—l Y(Znk) (Xn — ) (Xn — Nk:)T
;:7]7\,[—1 ¥ (2nk)
e Finally, we derive wrt. the mixing coefficients 7y :
Olog p(X | 7, p, %)
071

i =

K

|

— 0 where: E T = 1
k=1
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Expectation-Maximization for GMM

e \We can do the same for the covariances:

Ologp(X | 7, p, X)

!
=0
0>}

and we obtain:
y:fj—l Y(Znk) (Xn — ) (Xn — Nk:)T
;:7]7\,[—1 ¥ (2nk)
e Finally, we derive wrt. the mixing coefficients 7y :
Olog p(X | 7, p, %)
071

i =

K
=0 where: > m=1
| N k=1
and the resultis:  m, = = v(zu)

n=1
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Algorithm Summary

1.Initialize means p,.covariance matrices X.and
mixing coefficients

2.Compute the initial log-likelihood logp(X | =, pu, %)
3. E-Step. Compute the responsibilities:
N (xn | pg, 2

Zj:l miN (%7, | 7% )

4. M-Step. Update the parameters:

N N new new N
new __ anl ’}/(an)Xn ynew __ anl ’}/(an)(Xn B H’ke )(Xn B I“l’ke )T new __ 1
— ko = T = N Z ¥ (2nk)

Zfzvzl 7<an) ij:l ’V(an) n=1
5.Compute log-likelihood; if not converged go to 3.
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The Same Example Again
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Why is it Called “EM”?

Assume for a moment that we observe X and the
binary latent variables Z. The likelihood is then:

N
“C lete-dat
p(X,Z | m,p, %) = H p(Zn, | ™)p(Xn | Zn, py 2) Iogmllzeelilfneooil’:’11

n=1
K r 1
where  p(z, | w) = [[ =i~ and Zn,
k=1 e
K
p(Xn ‘ Zn, K, E) — HN(Xn ‘ l’l’lmzk)znk Xn
k=1 I e ')
which leads to the log-formulation: L i
N K
logp(X,Z | 7,1, %) = > > znrp(logmy +log N (xp | py, X))
n=1 k=1
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Why is it Called “EM”?

Instead of maximizing the joint log-likelihood, we
maximize its expectation under the latent variable
distribution:

2
2

27 log p(X, Z | 0,1, B)] = Lz [z (log . + log N (xn | pay; Z))

n

I\
2y
[
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Why is it Called “EM”?

Instead of maximizing the joint log-likelihood, we
maximize its expectation under the latent variable

distribution:

2
2

2 log p(X, Z | 7, 1, 5)] = 87 [2k) (log i + 1og N (% | By, Bie))
k

I\
[

n

where the latent variable distribution per point is:

0% |20 Oz 10)
P [ 0) = =0 0 o)

— Hllil(ﬂlN(Xn ‘ I,l,ljzl))znl
Zjl'{zl 7-‘-.7"/\/(Xn | 223 Zj)
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Observations

* Compared to K-means, points can now belong to
both clusters (soft assignment)

e |n addition to the cluster center, a covariance Is
estimated by EM

e |nitialization is the same as used for K-means
* Number of iterations needed for EM is much higher
* Also: each cycle requires much more computation

e Therefore: start with K-means and run EM on the
result of K-means (covariances can be initialized to
the sample covariances of K-means)

* EM only finds a local maximum of the likelihood!
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Questions

e How can we determine the number of clusters?

o different approaches exist, e.g. by “trying out” several
values for K and finding the one with highest
likelihood

e \What if the clusters can not be approximated well
by Gaussians?

e Can we formulate an algorithm that only relies on
pairwise similarities”?
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Questions

e How can we determine the number of clusters?

o different approaches exist, e.g. by “trying out” several
values for K and finding the one with highest
likelihood

e \What if the clusters can not be approximated well
by Gaussians?

e Can we formulate an algorithm that only relies on
pairwise similarities”?

One example for such an algorithm is
Spectral Clustering
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Spectral Clustering

e Consider an undirected graph that connects all
data points

e The edge weights are the similarities (“closeness™)

e We define the weighted degree d; of a hode as the
sum of all outgoing edges

N
v di =) wy
j=1
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Spectral Clustering

* The Graph Laplacian is defined as:

L=D-W
e This matrix has the following properties:
*the 1 vector is eigenvector with eigenvalue O
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Spectral Clustering

* The Graph Laplacian is defined as:
L=D-W
e This matrix has the following properties:

*the 1 vector is eigenvector with eigenvector O
e the matrix is symmetric and positive semi-definite
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Spectral Clustering

* The Graph Laplacian is defined as:
L=D-W
e This matrix has the following properties:

*the 1 vector is eigenvector with eigenvector O
e the matrix is symmetric and positive semi-definite

e \With these properties we can show:
Theorem: The set of eigenvectors of L with
eigenvalue 0 is spanned by the indicator vectors

1a,,...,14,, where A; are the K connected
components of the graph.
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The Algorithm

* |nput: Similarity matrix W
eComputeL=D-W

e Compute the eigenvectors that correspond to the
K smallest eigenvalues

e Stack these vectors as columns in a matrix U
e Treat each row of U as a K-dim data point
e Cluster the N rows with K-means clustering

e The indices of the rows that correspond to the
resulting clusters are those of the original data
points.
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An Example

k-means clustering spectral cI ster'ng
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e Spectral clustering can handle complex problems
such as this one

e The complexity of the algorithm is O(N’), because
it has to solve an eigenvector problem

e But there are efficient variants of the algorithm
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Further Remarks

* To account for nodes that are highly connected,
we can use a normalized version of the graph
Laplacian

e Two different methods exist:
* Lyw =D 'L=I-D"'W
¢ Lyym =D LD 2 =1—-D WD >

* These have similar eigenspaces than the original
Laplacian L

e Clustering results tend to be better than with the
unnormalized Laplacian
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Affinity Propagation

* Another algorithm that is based on similarities

* The idea Is to determine cluster centers
(“exemplars”) that explain other data points in an
optimal way

e This Is similar to k-medoids, but the algorithm is
more robust against local minima

e |[dea: each data point must choose another data
point as its exemplar; some points will choose
themselves as exemplar

* The number of clusters is then found automatically
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Affinity Propagation

® Input: similarity values s(i,))

® Initialize the responsibllities r(1,j), and the
availabilities a(i,)) to O
e do until convergence:

e recompute the responsibilities:

r(i,j) = s(i,j) — g,lg;st{a(i,j’) +5(i,5)}

e recompute the availabilities:
a(i, j) = min {o, r(j.g)+ Y. max{0, r(z",j>}}
i" ¢ {i.5}
®* the j that maximizes r(i,j) + a(i,j) is the exemplar of i

PD Dr. Rudolph Triebel
Computer Vision Group



Affinity Propagation

* |[ntuitively:

® responsibility measures how much i thinks that ;
would be a good exemplar

® availability measures how strongly j thinks it should be
an exemplar for i

* The algorithm can be shown to be equivalent to
max-product loopy belief propagation

e Convergence is not guaranteed, but with
“*damping” oscillations can be avoided

* The number of clusters can be controlled by the
“self-similarity”

PD Dr. Rudolph Triebel
Computer Vision Group



Aff|n|ty Propagatlon
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non-exemplar exemplar

* Colours: how much each point wants to be an exemplar

e Edge strengths: how much a point wants to belong to a
cluster
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Hierarchical Clustering

e Often, we want to have nested clusters instead of
a “flat” clustering

e Two possible methods:

* “bottom-up” or agglomerative clustering
* “top-down” or divisive clustering

* Both methods take a dissimilarity matrix as input
e Bottom-up grows merges points to clusters
e Top-down splits clusters into sub-clusters

e Both are heuristics, there is no clear objective
function

e They always produce a clustering (also for noise)
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Agglomerative Clustering

e Start with N clusters, each contains exactly one
data point

e At each step, merge the two most similar groups
e Repeat until there Is a single group

5 2.57
45} : 2 \

Al
3.5 2_
B “Dendrogram”
25¢ 5

o103 15"
1.5¢ ' 4
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Linkage

* |n agglomerative clustering, it is important to
define a distance measure between two clusters

e There are three different methods:

* Single linkage: considers the two closest elements
from both clusters and uses their distance

e Complete linkage: considers the two farthest
elements from both clusters

* Average linkage: uses the average distance between
pairs of points from both clusters

* Depending on the application, one linkage should
be preferred over the other
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Single Linkage

* The distance is based on dsi. (G, H) = 'eénif%Hdi’i/

* The resulting dendrogram is a minimum spanning
tree, I.e. it minimizes the sum of the edge weights

e Thus: we can compute the clustering in O(NZ) time

single link

0.3F
0.25F
0.2
0.15F
0.1F

0.05F
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Complete Linkage

* The distance is based on dcr(G, H) = .Egla;}éHdi,i/

e Complete linkage fulfills the compactness
property, i.e. all points in a group should be
similar to each other

e Tends to produce clusters with smaller diameter

complete link

ﬁ VL e
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Average Linkage

. . 1 — —
* The distance is based on du. (G, H) = —— ) d; i
cGieH

* |s a good compromise between single and
complete linkage

e However: sensitive to changes on the meas. scale

average link
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Divisive Clustering

e Start with all data in a single cluster

e Recursively divide each cluster into two child
clusters

e Problem: optimal split is hard to find

e |dea: use the cluster with the largest diameter and
use K-means with K =2

e Or: use minimum-spanning tree and cut links with
the largest dissimilarity

* |n general two advantages:

e Can be faster
e More globally informed (not myopic as bottom-up)
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Choosing the Number of Clusters

* As in general, choosing the number of clusters is
hard

* When a dendrogram is available, a gap can be
detected in the lengths of the links

* This represents the dissimilarity between merged
groups

e However: In real data this can be hard to detect

* There are Bayesian technigues to address this
problem (Bayesian hierarchical clustering)
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Evaluation of Clustering Algorithms

e Clustering is unsupervised: evaluation of the
output is hard, because no ground truth is given

* |[ntuitively, points in a cluster should be similar and
points in different clusters dissimilar

e However, better methods use external information,
such as labels or a reference clustering

* Then we can compare clusterings with the labels
using different metrics, e.g.
® purity
e mutual information
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Purity

* Define N;; the number of objects in cluster i that
are in class | -

* Define N, — > N;; number of objects in cluster |
j=1

® Dij = ]]V\;Z Pi = Maxpi; “Purity”

* overall purity __ - ane) (322) (88
Z R Purity = 0.71

e Purity ranges from 0O (bad) to 1 (good)

e But: a clustering with each object in its own
cluster has a purity of 1
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Mutual Information

®*let Uand V be two clusterings

* Define the probability that a randomly chosen
point belongs to cluster ; in Uand to v; in

\uiﬂvj|

N
e Also: The prob that apointisinu;, py(i) =

va(ZJ)
-3 S vl pu v ()

1=1 5=1

pUV(iaj) —

|UZ‘

* This can be normalized to account for many small
clusters with low entropy
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Summary

e Several Clustering methods exist:

e K-means clustering and Expectation-Maximization,
both based on Gaussian Mixture Models

e K-means uses hard assignments, whereas EM uses
soft assignments and estimates also the covariances

e Spectral clustering uses the graph Laplacian and
performs an eigenvector analysis

e Major Problem:;

* most clustering algorithms require the number of
clusters to be given
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