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Expectation-Maximization

• EM is an elegant and powerful method for MLE 
problems with latent variables 

• Main idea: model parameters and latent variables 
are estimated iteratively, where average over the 
latent variables (expectation) 

• A typical example application of EM is the 
Gaussian Mixture model (GMM) 

• However, EM has many other applications 

• First, we consider EM for GMMs
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Expectation-Maximization for GMM

• First, we define the responsibilities:
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Expectation-Maximization for GMM

• First, we define the responsibilities:
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Expectation-Maximization for GMM

• First, we define the responsibilities: 

• Next, we derive the log-likelihood wrt. to     : 
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Expectation-Maximization for GMM

• First, we define the responsibilities: 

• Next, we derive the log-likelihood wrt. to     :  
 
 
 
and we obtain: 
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Expectation-Maximization for GMM

• We can do the same for the covariances:  
 
 
 
and we obtain: 

• Finally, we derive wrt. the mixing coefficients     : 
 
                                              where: 
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Expectation-Maximization for GMM

• We can do the same for the covariances:  
 
 
 
and we obtain: 

• Finally, we derive wrt. the mixing coefficients     : 
 
                                              where:  
 
and the result is:  
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Algorithm Summary

1.Initialize means     covariance matrices     and 
mixing coefficients 

2.Compute the initial log-likelihood 

3. E-Step. Compute the responsibilities:  
 
 

4. M-Step. Update the parameters: 
 

5.Compute log-likelihood; if not converged go to 3.
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The Same Example Again
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Why is it Called “EM”?

Assume for a moment that we observe X and the 

binary latent variables Z. The likelihood is then:  
 
 
 
where                                and 
 
 
 
 
which leads to the log-formulation:
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“Complete-data 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Why is it Called “EM”?

Instead of maximizing the joint log-likelihood, we 
maximize its expectation under the latent variable 
distribution: 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Why is it Called “EM”?

Instead of maximizing the joint log-likelihood, we 
maximize its expectation under the latent variable 
distribution: 
 
 
 
where the latent variable distribution per point is:
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Observations

• Compared to K-means, points can now belong to 
both clusters (soft assignment) 

• In addition to the cluster center, a covariance is 
estimated by EM 

• Initialization is the same as used for K-means 

• Number of iterations needed for EM is much higher 

• Also: each cycle requires much more computation 

• Therefore: start with K-means and run EM on the 
result of K-means (covariances can be initialized to 
the sample covariances of K-means) 

• EM only finds a local maximum of the likelihood!
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Questions

• How can we determine the number of clusters? 

•different approaches exist, e.g. by “trying out” several 
values for K and finding the one with highest 
likelihood 

• What if the clusters can not be approximated well 
by Gaussians? 

• Can we formulate an algorithm that only relies on 
pairwise similarities? 

14
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Questions

• How can we determine the number of clusters? 

•different approaches exist, e.g. by “trying out” several 
values for K and finding the one with highest 
likelihood 

• What if the clusters can not be approximated well 
by Gaussians? 

• Can we formulate an algorithm that only relies on 
pairwise similarities? 

One example for such an algorithm is  
 Spectral Clustering
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di =
NX

j=1

wij

D =

Spectral Clustering

• Consider an undirected graph that connects all 
data points 

• The edge weights are the similarities (“closeness”) 

• We define the weighted degree    of a node as the 
sum of all outgoing edges

16
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di
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvalue 0

17

L = D �W
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvector 0 

•the matrix is symmetric and positive semi-definite

18
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Spectral Clustering

• The Graph Laplacian is defined as: 

• This matrix has the following properties: 

•the 1 vector is eigenvector with eigenvector 0 

•the matrix is symmetric and positive semi-definite 

• With these properties we can show: 

Theorem: The set of eigenvectors of L with 
eigenvalue 0 is spanned by the indicator vectors  
                  , where       are the K connected 
components of the graph.

19

L = D �W

1A1 , . . . ,1AK Ak
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The Algorithm

• Input: Similarity matrix W 

• Compute L = D - W 

• Compute the eigenvectors that correspond to the 
K smallest eigenvalues 

• Stack these vectors as columns in a matrix U 

• Treat each row of U as a K-dim data point 

• Cluster the N rows with K-means clustering 

• The indices of the rows that correspond to the 
resulting clusters are those of the original data 
points.
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An Example

• Spectral clustering can handle complex problems 
such as this one 

• The complexity of the algorithm is O(N ), because 
it has to solve an eigenvector problem 

• But there are efficient variants of the algorithm

21
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Further Remarks

• To account for nodes that are highly connected, 
we can use a normalized version of the graph 
Laplacian 

• Two different methods exist: 

•    

•    

• These have similar eigenspaces than the original 
Laplacian L 

• Clustering results tend to be better than with the 
unnormalized Laplacian

22

Lrw = D�1L = I �D�1W

Lsym = D� 1
2LD� 1

2 = I �D� 1
2WD� 1
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Affinity Propagation

• Another algorithm that is based on similarities 

• The idea is to determine cluster centers 
(“exemplars”) that explain other data points in an 
optimal way 

• This is similar to k-medoids, but the algorithm is 
more robust against local minima 

• Idea: each data point must choose another data 
point as its exemplar; some points will choose 
themselves as exemplar 

• The number of clusters is then found automatically
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Affinity Propagation

• Input: similarity values s(i,j)   
• Initialize the responsibilities r(i,j), and the 

availabilities a(i,j) to 0 

• do until convergence: 

•recompute the responsibilities: 

•recompute the availabilities: 

• the j that maximizes r(i,j) + a(i,j) is the exemplar of i

24

r(i, j) = s(i, j)�max

j0 6=j
{a(i, j0) + s(i, j0)}

a(i, j) = min

8
<

:0, r(j, j) +
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i0 /2{i,j}

max{0, r(i0, j)}
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=
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Affinity Propagation

• Intuitively: 

•responsibility measures how much i thinks that j 
would be a good exemplar 

•availability measures how strongly j thinks it should be 

an exemplar for i 
• The algorithm can be shown to be equivalent to 

max-product loopy belief propagation 

• Convergence is not guaranteed, but with 
“damping” oscillations can be avoided 

• The number of clusters can be controlled by the 
“self-similarity”

25
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Affinity Propagation

• Colours: how much each point wants to be an exemplar 

• Edge strengths: how much a point wants to belong to a 
cluster 

26
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Hierarchical Clustering

• Often, we want to have nested clusters instead of 
a “flat” clustering 

• Two possible methods: 

•“bottom-up” or agglomerative clustering 

•“top-down” or divisive clustering 

• Both methods take a dissimilarity matrix as input 

• Bottom-up grows merges points to clusters 

• Top-down splits clusters into sub-clusters 

• Both are heuristics, there is no clear objective 
function 

• They always produce a clustering (also for noise) 
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Agglomerative Clustering

• Start with N clusters, each contains exactly one 
data point 

• At each step, merge the two most similar groups 

• Repeat until there is a single group

28
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Linkage

• In agglomerative clustering, it is important to 
define a distance measure between two clusters 

• There are three different methods: 

•Single linkage: considers the two closest elements 
from both clusters and uses their distance 

•Complete linkage: considers the two farthest 
elements from both clusters 

•Average linkage: uses the average distance between 
pairs of points from both clusters 

• Depending on the application, one linkage should 
be preferred over the other

29
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Single Linkage

• The distance is based on 

• The resulting dendrogram is a minimum spanning 
tree, i.e. it minimizes the sum of the edge weights 

• Thus: we can compute the clustering in O(N ) time

30
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dCL(G,H) = max

i2G,i02H
di,i0

Complete Linkage

• The distance is based on 

• Complete linkage fulfills the compactness 
property, i.e. all points in a group should be 
similar to each other 

• Tends to produce clusters with smaller diameter
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Average Linkage

• The distance is based on 

• Is a good compromise between single and 
complete linkage 

• However: sensitive to changes on the meas. scale
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Divisive Clustering

• Start with all data in a single cluster 

• Recursively divide each cluster into two child 
clusters 

• Problem: optimal split is hard to find 

• Idea: use the cluster with the largest diameter and 
use K-means with K = 2 

• Or: use minimum-spanning tree and cut links with 
the largest dissimilarity 

• In general two advantages: 

•Can be faster 

•More globally informed (not myopic as bottom-up)
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Choosing the Number of Clusters

• As in general, choosing the number of clusters is 
hard 

• When a dendrogram is available, a gap can be 
detected in the lengths of the links 

• This represents the dissimilarity between merged 
groups 

• However: in real data this can be hard to detect 

• There are Bayesian techniques to address this 
problem (Bayesian hierarchical clustering)
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Evaluation of Clustering Algorithms

• Clustering is unsupervised: evaluation of the 
output is hard, because no ground truth is given 

• Intuitively, points in a cluster should be similar and 
points in different clusters dissimilar 

• However, better methods use external information, 
such as labels or a reference clustering 

• Then we can compare clusterings with the labels 
using different metrics, e.g.  

•purity 

•mutual information
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Purity

• Define       the number of objects in cluster i that 
are in class j 

• Define                     number of objects in cluster i 

•                                          “Purity” 

• overall purity 

• Purity ranges from 0 (bad) to 1 (good) 

• But: a clustering with each object in its own 
cluster has a purity of 1

36
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Mutual Information

• Let U and V be two clusterings 

• Define the probability that a randomly chosen 

point belongs to cluster     in U and to     in V 

• Also: The prob. that a point is in 

• This can be normalized to account for many small 
clusters with low entropy 

37

ui vj

pUV (i, j) =
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Summary

• Several Clustering methods exist: 

•K-means clustering and Expectation-Maximization, 
both based on Gaussian Mixture Models  

•K-means uses hard assignments, whereas EM uses 
soft assignments and estimates also the covariances 

•Spectral clustering uses the graph Laplacian and 
performs an eigenvector analysis 

• Major Problem:  

•most clustering algorithms require the number of 
clusters to be given
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