
TU München
Fakultät für Informatik
PD Dr. Rudolph Triebel
John Chiotellis, Max Denninger

Machine Learning for Computer Vision
Winter term 2017

November 29, 2017
Topic: Metric Learning

Exercise 1: Metric Learning

a) Given a valid metric DM , is D2
M also a metric? Why?

No, D2
M is not a metric, as we cannot guarantee that the triangle inequality is

preserved. We can easily find counterexamples. For instance, in the one-dimensional
case with the euclidean metric we have:

D(0, 2) ≤ D(0, 1) +D(1, 2)

but
D2(0, 2) > D2(0, 1) +D2(1, 2).

We can also prove that the triangle inequality does not (always) hold. For arbitrary
vectors x, y, z ∈ Rd, we have:

D2
M(x, z) +D2

M(z, y) = (x− z)TM(x− z) + (z − y)T (z − y)

= xTMx+ zTMz − 2xTMz + zTMz + yTMy − 2zTMy

= xTMx+ yTMy + 2zTMz − 2xTMz − 2zTMy

= D2
M(x, y) + 2xTMy + 2zTMz − 2xTMz − 2zTMy

= D2
M(x, y) + 2(xTM(y − z) + zTM(z − y))

= D2
M(x, y) + 2(xTM(y − z)− zTM(y − z))

= D2
M(x, y) + 2(x− z)TM(y − z).

The term (x − z)TM(y − z) is an inner product of the vectors x − z and y − z in
the new metric space:

(x−z)TM(y−z) = ||x−z||||M(y−z)|| cos(∠(x−z,M(y−z))) = γ cos θ , γ > 0

Since the vectors x, y, z were arbitrary, |θ| ∈ [0, π]. Therefore we have:

D2
M(x, z) +D2

M(z, y)

{
≥ D2

M(x, y) if |θ| ∈ [0, π
2
]

< D2
M(x, y) if |θ| ∈ (π

2
, π]

For |θ| ∈ (π
2
, π] the triangle inequality is violated.

1

b) Given a matrix X of n data points xi ∈ Rd, show how computing the eigen-
decomposition of the covariance of X is equivalent to computing the singular value
decomposition of X .

The covariance of X is a real symmetric semi-positive definite matrix C = 1
n
XTX.

Therefore we know it has an eigendecomposition of the form C = 1
n
V ΛV T , where

V contains the eigenvectors of C as columns and Λ contains the corresponding non-
negative eigenvalues in the diagonal.
Assuming X has a singular value decomposition X = UΣW T , we can infer a de-
composition for C as

C =
1

n
XTX =

1

n
WΣUTUΣW T =

1

n
WΣ2W T

By inspection, we can see that the two decompositions are identical, with W = V
and Λ = Σ2.

c) What is the difference between metric learning and kernel learning? When would
you prefer to use one over the other?

Metric learning methods attempt to find a linear embedding of a given set of in-
put vectors, such that a clustering or classification objective is optimized in the
transformed space. This embedding has usually fewer or at worst equal number of
dimensions as the original input space.

In contrast, kernel methods attempt to implicitly find a higher-dimensional repre-
sentation of the data, such that the classes can be linearly separated. This repre-
sentation does not need to be found explicitly but is exploited by using only inner
products of the high-dimensional features (kernel trick).

Therefore when the dataset size is larger than the dimensionality of the given inputs
(n > d), it will be more efficient to work with a covariance-like matrix. Metric
learning will try to find inherent object relationships in the essential dimensions
and weight them appropriately. When the size of the dataset is smaller than the
inputs dimensionality (n < d), kernel methods are a more appropriate choice, as it
will be more efficient to work with the kernel matrix and more complex - non-linear
- relationships can be expressed.

d) In Neighborhood Component Analysis, we define a stochastic neighbor selection rule.
The probability that a data point j is selected as neighbor of point i is given by:

pij =
exp{−||Lxi − Lxj||2}∑

k 6=i
exp{−||Lxi − Lxk||2}

(1)

namely a softmax over the squared distances to all points in the transformed space.
The goal is to maximize

f(L) =
∑
i

∑
j∈Ci

pij (2)

2

namely the probability that the neighbors that will be selected for each point i will
belong to the same class Ci. Can you derive the gradient of f(L)?

Let us notate the denominator of pij as Z(L) =
∑
k 6=i

exp{−||Lxi − Lxk||2}.

We will make use of the fact that we can write squared distances as traces:

||Lxi − Lxj||2 = (L(xi − xj))T (L(xi − xj)) = (xi − xj)TLTL(xi − xj)
= tr(LTL(xi − xj)(xi − xj)T) = tr(LTLCij)

where for convenience we defined Cij = (xi − xj)(xi − xj)T . And we will use the
gradient w.r.t. L: ∇Ltr(L

TLCij) = 2LCij.

First we can see that the gradient can go inside of the sums: ∇Lf(L) =
∑
i

∑
j∈Ci

∇Lpij.

Then we see that we have to apply the quotient rule, since L appears in both the
nominator and denominator of pij:

∇Lpij = ∇L

(
exp{−||Lxi − Lxj||2}

Z(L)

)
=

(∇L exp{−||Lxi − Lxj||2})Z(L)− (∇LZ(L)) exp{−||Lxi − Lxj||2}
Z(L)2

The gradient of the nominator is

∇L exp{−||Lxi − Lxj||2} = exp{−||Lxi − Lxj||2}∇L(−||Lxi − Lxj||2)
= − exp{−||Lxi − Lxj||2}∇Ltr(L

TLCij)

= −2 exp{−||Lxi − Lxj||2}LCij

The gradient of the denominator is similar:

∇LZ(L) = ∇L

∑
k 6=i

exp{−||Lxi − Lxk||2} =
∑
k 6=i

∇L exp{−||Lxi − Lxk||2}

=
∑
k 6=i

∇L exp{−||Lxi − Lxk||2} = −2L
∑
k 6=i

exp{−||Lxi − Lxk||2}Cik

3

Therefore we have

∇Lpij = −2L

exp{−||Lxi − Lxj||2}CijZ(L)−
∑
k 6=i

exp{−||Lxi − Lxk||2}Cik exp{−||Lxi − Lxj||2}

Z(L)2

= −2L

(
exp{−||Lxi − Lxj||2}

Z(L)
Cij −

∑
k 6=i

exp{−||Lxi − Lxk||2}
Z(L)

Cik
exp{−||Lxi − Lxj||2}

Z(L)

)

= −2L

(
pijCij −

∑
k 6=i

pikCikpij

)
= 2Lpij

(∑
k 6=i

pikCik − Cij

)

And summing over all inputs again we get the total gradient

∇Lf(L) =
∑
i

∑
j∈Ci

2Lpij

(∑
k 6=i

pikCik − Cij

)
= 2L

∑
i

∑
j∈Ci

pij

(∑
k 6=i

pikCik − Cij

)

= 2L
∑
i

(∑
j∈Ci

pij
∑
k 6=i

pikCik −
∑
j∈Ci

pijCij

)
= 2L

∑
i

(
pi
∑
k 6=i

pikCik −
∑
j∈Ci

pijCij

)

e) What is the difference between LDA and NCA? Linear Discriminant Analysis (LDA)
maximizes the variance between clusters with respect to the variance within clusters.
This can be formulated in one nice short equation that has a closed form solution,
namely the optimal transformation is the eigenvectors of the matrix C−1w Cb. The
main drawback of LDA is that it assumes that each cluster follows a normal distri-
bution.

Neighborhood Component Analysis (NCA) on the other hand is a neighbors based
method (as the name suggests) and therefore does not make any assumptions about
the clusters distributions. The objective it tries to maximize is derived from a
probabilistic point of view. It wants to maximize the probability that the neighbors
that will be selected, according to the learned metric, will belong to the same class.
The drawback of NCA is that it needs to estimate n×n probabilities at each iteration
of the optimization.

f) The KL-divergence measures the (dis-)similarity of two probability distributions. It
is defined as:

DKL(p||q) =

∫
p(x) log

(
p(x)

q(x)

)
dx

Is the KL-divergence a metric? Why?

No, the KL-divergence is not a metric, because it does not satisfy the symmetry
property. It is non-negative, and the identity of indiscernibles holds for distributions
but symmetry cannot be guaranteed. If it was symmetric, it would mean that
DKL(p||q) = DKL(q||p).

4

DKL(p||q)−DKL(q||p) =

∫
p(x) log

(
p(x)

q(x)

)
dx−

∫
q(x) log

(
q(x)

p(x)

)
dx

=

∫
p(x) log p(x)− p(x) log q(x)− q(x) log q(x) + q(x) log p(x)dx

=

∫
(p(x) + q(x))(log p(x)− log q(x))

=

∫
(p(x) + q(x)) log

(
p(x)

q(x)

)
= 2E p+q

2
[log

(
p(x)

q(x)

)
]

We can see this as a weighted average of log
(
p(x)
q(x)

)
under the distribution 1

2
(p(x) +

q(x)). There is no reason to assume that this quantity is zero.

5

