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D-Separation

Say:  A, B, and C are non-intersecting subsets of 
nodes in a directed graph. 

A path from A to B is blocked by C if it contains 
a node such that either 

a) the arrows on the path meet either head-to-tail or tail-to-

tail at the node, and the node is in the set C, or 

b) the arrows meet head-to-head at the node, and neither 

the node, nor any of its descendants, are in the set C. 

If all paths from A to B are blocked, A is said to 
be d-separated from B by C.  

Notation:
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D-Separation is a 
property of graphs 

and not of 
probability 

distributions
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D-Separation: Example

We condition on a descendant 
of e, i.e. it does not block the 
path from a to b.

We condition on a tail-to-tail 
node on the only path from a 
to b, i.e f blocks the path.
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p(a) = 0.9 p(b) = 0.9

p(¬c | ¬b) = 0.81
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The Head-to-Head Node 
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Example:  

a: Battery charged (0 or 1) 

b: Fuel tank full (0 or 1) 

c: Fuel gauge says full (0 or 1) 

We can compute 

and 

and obtain 

similarly:   

“a explains c away”

a b p(c)

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

p(¬c) = 0.315

p(¬b | ¬c) ⇡ 0.257

p(¬b | ¬c,¬a) ⇡ 0.111
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I-Map

Definition 4.1: A graph G is called an I-map for a 
distribution p if every D-separation of G corresponds 
to a conditional independence relation satisfied by p: 

 

Example:  The fully connected graph is an I-map for any 
distribution, as there are no D-separations in that 
graph.
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D-Map

Definition 4.2: A graph G is called an D-map for a 
distribution p if for every conditional independence 
relation satisfied by p there is a D-separation in G : 
  

 

Example:  The graph without any edges is a D-map for 
any distribution, as all pairs of subsets of nodes are 
D-separated in that graph.  
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Perfect Map

Definition 4.3: A graph G is called a perfect map for a 
distribution p if it is a D-map and an I-map of p. 

 

A perfect map uniquely defines a probability distribution. 
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The Markov Blanket

Consider a distribution of a node xi conditioned on 
all other nodes:

Factors independent of xi 
cancel between numerator 
and denominator.

Markov blanket         at 

xi : all parents, children 

and co-parents of xi.   
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Directed vs. Undirected Graphs

Using D-separation we can identify conditional 
independencies in directed graphical models, but: 

• Is there a simpler, more intuitive way to express 
conditional independence in a graph? 

• Can we find a representation for cases where an  
„ordering“ of the random variables is inappropriate 
(e.g. the pixels in a camera image)? 

Yes, we can: by removing the directions of the 
edges we obtain an Undirected Graphical Model, 

also known as a Markov Random Field
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Example: Camera Image

• directions are counter-intuitive for images 

• Markov blanket is not just the direct neighbors 
when using a directed model
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Markov Random Fields

All paths from A to B go 

through C, i.e. C blocks all 
paths.

Markov 
Blanket

We only need to condition 
on the direct neighbors of 

x to get c.i., because these 
already block every path 

from x to any other node.
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Factorization of MRFs

Any two nodes xi and xj that are not connected in an 
MRF are conditionally independent given all other nodes: 

This means: each factor contains only nodes that are 
connected 

This motivates the consideration  
of cliques in the graph: 

• A clique is a fully connected subgraph. 

• A maximal clique can not be extended 
with another node without loosing the  
property of full connectivity.

Clique

Maximal Clique
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p(xi, xj | x\{i,j}) = p(xi | x\{i,j})p(xj | x\{i,j})



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Factorization of MRFs
In general, a Markov Random Field is factorized as 

where C is the set of all (maximal) cliques and ΦC  is a 

positive function of a given clique xC of nodes, called 

the clique potential. Z is called the partition function. 

Theorem (Hammersley/Clifford): Any undirected 

model with associated clique potentials ΦC  is a perfect 

map for the probability distribution defined by Equation 
(4.1). 

As a conclusion, all probability distributions that can be 
factorized as in (4.1), can be represented as an MRF.
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Converting Directed to Undirected Graphs (1)

In this case: Z=1
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x1 x1

x2 x2

x3
x3

x4 x4

p(x) = p(x1)p(x2)p(x2)p(x4 | x1, x2, x3)
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Converting Directed to Undirected Graphs (2)

In general: conditional distributions in the directed graph 
are mapped to cliques in the undirected graph 

However: the variables are not conditionally independent 
given the head-to-head node 

Therefore: Connect all parents of head-to-head nodes with 
each other (moralization)
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x1 x1

x2 x2

x3
x3

x4 x4

p(x) = p(x1)p(x2)p(x2)p(x4 | x1, x2, x3)
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Converting Directed to Undirected Graphs (2)

Problem: This process can remove conditional 
independence relations (inefficient) 

Generally: There is no one-to-one mapping between the 
distributions represented by directed and by undirected 
graphs.
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p(x) = �(x1, x2, x3, x4)
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Representability

• As for DAGs, we can define an I-map, a D-map 
and a perfect map for MRFs. 

• The set of all distributions for which a DAG 
exists that is a perfect map is different from 
that for MRFs. 

Distributions 
with a DAG as 
perfect map

Distributions 
with an MRF as 

perfect map

All distributions
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Directed vs. Undirected Graphs

Both distributions can not be represented in the other 
framework (directed/undirected) with all conditional 
independence relations.
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Using Graphical Models

We can use a graphical model to do inference: 

• Some nodes in the graph are observed, for others 
we want to find the posterior distribution 

• Also, computing the local marginal distribution p(xn) 
at any node xn can be done using inference. 

Question: How can inference be done with a 

graphical model?   

We will see that, when exploiting conditional 
independences, we can do efficient inference. 

19



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Inference on a Chain

The joint probability is given by

The marginal at  x3 is

In the general case with N nodes we have

and

20
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Inference on a Chain

• This would mean KN computations! A more efficient 
way is obtained by rearranging:

Vectors of size K
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Inference on a Chain

In general, we have
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Inference on a Chain

The messages µα and µβ can be computed 

recursively: 

Computation of  µα starts at the first node and 

computation of  µβ starts at the last node.
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Inference on a Chain

• The first values of µα and µβ are: 

• The partition function can be computed at any node: 

• Overall, we have O(NK2) operations to compute the 
marginal 
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Inference on a Chain

To compute local marginals: 

•Compute and store all forward messages,             . 

•Compute and store all backward messages,              

•Compute Z once at a node xm: 

•Compute 
 
 
for all variables required.
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Directed 
Tree PolytreeUndirected 

Tree

It is then known as the sum-product algorithm.  
A special case of this is belief propagation. 

26



f(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2)
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Factor Graphs

• The Sum-product algorithm can be used to do 
inference on undirected and directed graphs. 

• A representation that generalizes directed and 
undirected models is the factor graph.

Directed graph Factor graph
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Factor Graphs

• The Sum-product algorithm can be used to do 
inference on undirected and directed graphs. 

• A representation that generalizes directed and 
undirected models is the factor graph.

Undirected graph Factor graph
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Factor Graphs

Factor graphs  

• can contain multiple factors 
for the same  nodes 

• are more general than 
undirected graphs 

• are bipartite, i.e. they consist 
of two kinds of nodes and all 
edges connect nodes of 
different kind

29
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Factor Graphs

• Directed trees convert to 
tree-structured factor graphs 

• The same holds for 
undirected trees 

• Also: directed polytrees 
convert to tree-structured 
factor graphs 

• And: Local cycles in a 
directed graph can be 
removed by converting to a 
factor graph

30
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Sum-Product Inference in General Graphical Models

1.Convert graph (directed or undirected) into a 
factor graph (there are no cycles) 

2.If the goal is to marginalize at node x, then 

consider x as a root node 

3.Initialize the recursion at the leaf nodes as: 
                          (var)  or                          (fac) 

4.Propagate messages from the leaves to x 
5.Propagate messages from x to the leaves 

6.Obtain marginals at every node by multiplying 
all incoming messages 
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µ

f!x

(x) = 1 µ

x!f

(x) = f(x)
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Other Inference Algorithms
• Max-Sum algorithm: used to maximize the joint 

probability of all variables (no marginalization) 

• Junction Tree algorithm: exact inference for 
general graphs (even with loops) 

• Loopy belief propagation: approximate 
inference on general graphs (more efficient) 

Special kind of undirected GM: 

• Conditional Random fields (e.g.: classification) 
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Conditional Random Fields

• Another kind of undirected graphical model is known 
as Conditional Random Field (CRF). 

• CRFs are used for classification where labels are 

represented as discrete random variables y and 

features as continuous random variables x 
• A CRF represents the conditional probability  
 
 
 
where w are parameters learned from training data. 

• CRFs are discriminative and MRFs are generative
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Conditional Random Fields

Derivation of the formula for CRFs: 

In the training phase, we compute parameters w that 
maximize the posterior:  

where (x,y) is the training data and p(w) is a Gaussian 
prior. In the inference phase we maximize

34

ˆ

w = argmax

w
p(w | x,y) = argmax

w
p(y | x,w)p(w)

argmax

y⇤
p(y⇤ | x⇤, ˆw)
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Conditional Random Fields

Note: the definition of xi,j and yi,j is different 
from the one in C.M. Bishop (pg.389)!

Typical example: 
observed variables 

xi,j are intensity 

values of pixels in 
an image and 

hidden variables yi,j 

are object labels
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Summary

• Undirected models (aka Markov random fields) 
provide an intuitive representation of conditional 
independence 

• An MRF is defined as a factorization over 
clique potentials and normalized globally 

• Directed and undirected models have different 
representative power (no simple “containment”) 

• Inference on undirected Markov chains is 
efficient using message passing 

• Factor graphs are more general; exact inference 
can be done efficiently using sum-product
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