

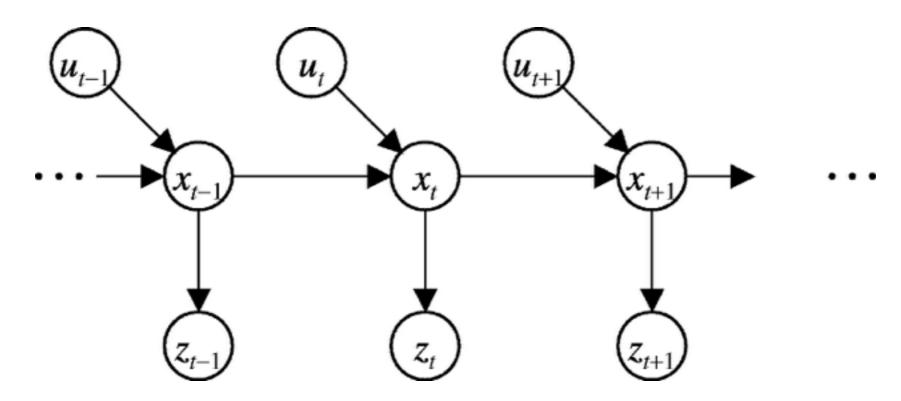
Computer Vision Group Prof. Daniel Cremers

Technische Universität München

# 7. Sequential Data

# **Bayes Filter (Rep.)**

We can describe the overall process using a Dynamic Bayes Network:



• This incorporates the following Markov assumptions:

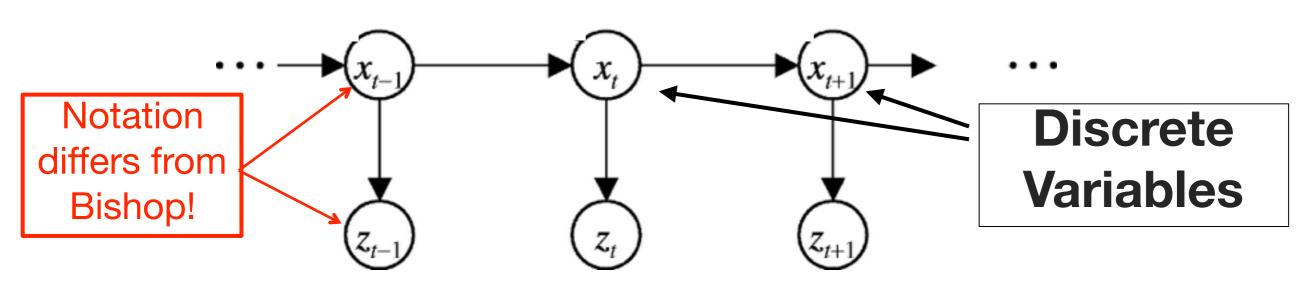
$$p(z_t \mid x_{0:t}, u_{1:t}, z_{1:t}) = p(z_t \mid x_t) \text{ (measurement)}$$

$$p(x_t \mid x_{0:t-1}, u_{1:t}, z_{1:t}) = p(x_t \mid x_{t-1}, u_t) \text{ (state)}$$



## **Bayes Filter Without Actions**

Removing the action variables we obtain:



• This incorporates the following Markov assumptions:

$$p(z_t \mid x_{0:t}, \quad z_{1:t}) = p(z_t \mid x_t) \text{ (measurement)}$$

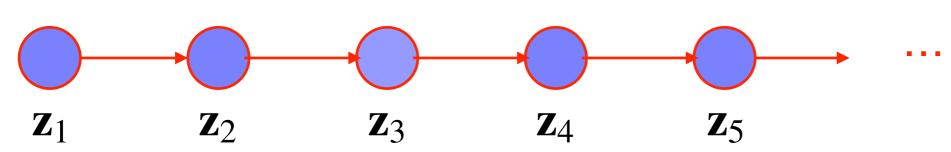
$$p(x_t \mid x_{0:t-1}, \quad z_{1:t}) = p(x_t \mid x_{t-1}) \text{ (state)}$$



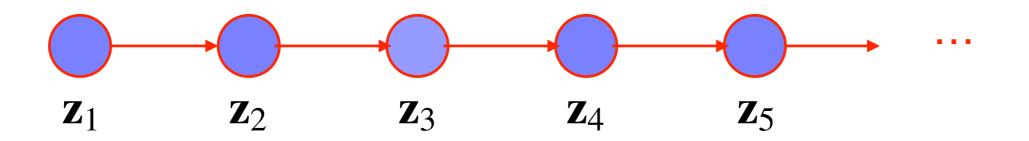
 Observations in sequential data should not be modeled as independent variables such as:



- Examples: weather forecast, speech, handwritten text, etc.
- The observation at time t depends on the observation(s) of (an) earlier time step(s):



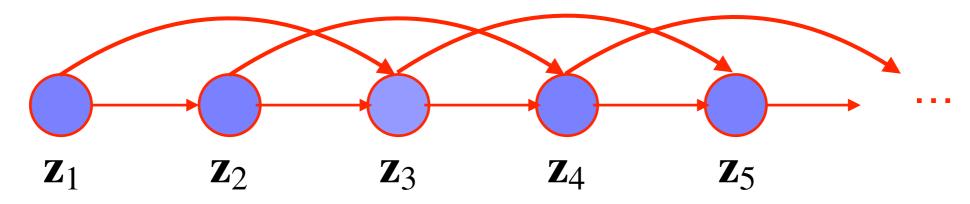




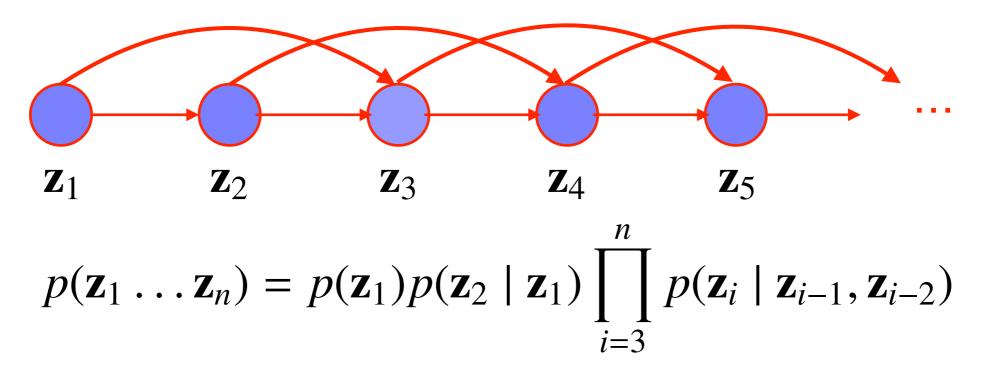
• The joint distribution is therefore (d-sep):

$$p(\mathbf{z}_1 \dots \mathbf{z}_n) = p(\mathbf{z}_1) \prod_{i=2}^n p(\mathbf{z}_i \mid \mathbf{z}_{i-1})$$

 However: often data depends on several earlier observations (not just one)



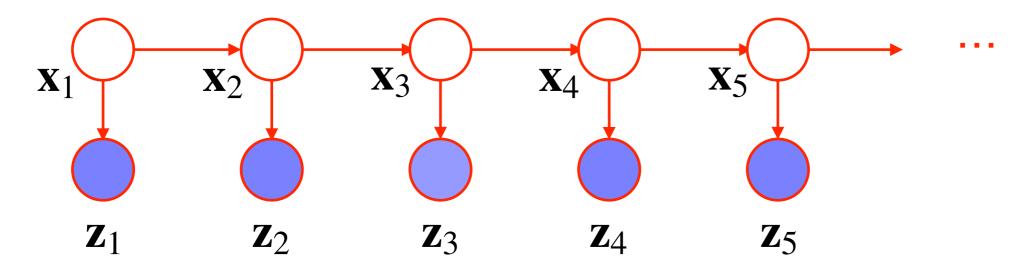




- Problem: number of stored parameters grows exponentially with the order of the Markov chain
- Question: can we model dependency of all previous observations with a limited number of parameters?



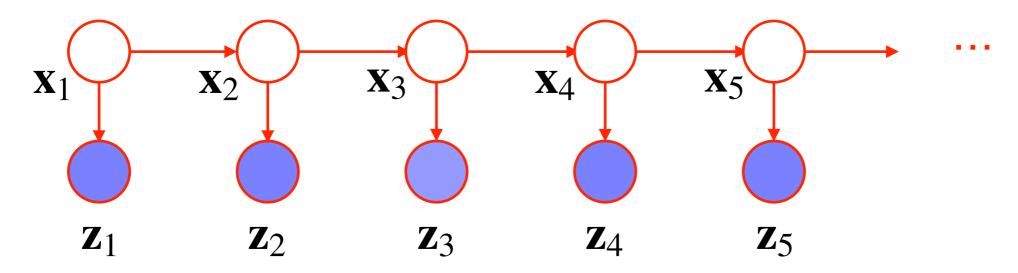
Idea: Introduce hidden (unobserved) variables:







Idea: Introduce hidden (unobserved) variables:



Now we have: dsep( $\mathbf{x}_n, \{\mathbf{x}_1, \dots, \mathbf{x}_{n-2}\}, \mathbf{x}_{n-1}$ )  $\Leftrightarrow p(\mathbf{x}_n \mid \mathbf{x}_1, \dots, \mathbf{x}_{n-2}, \mathbf{x}_{n-1}) = p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$ But:  $\neg dsep(\mathbf{z}_n, \{\mathbf{z}_1, \dots, \mathbf{z}_{n-2}\}, \mathbf{z}_{n-1})$  $\Leftrightarrow p(\mathbf{z}_n \mid \mathbf{z}_1, \dots, \mathbf{z}_{n-2}, \mathbf{z}_{n-1}) \neq p(\mathbf{z}_n \mid \mathbf{z}_{n-1})$ 

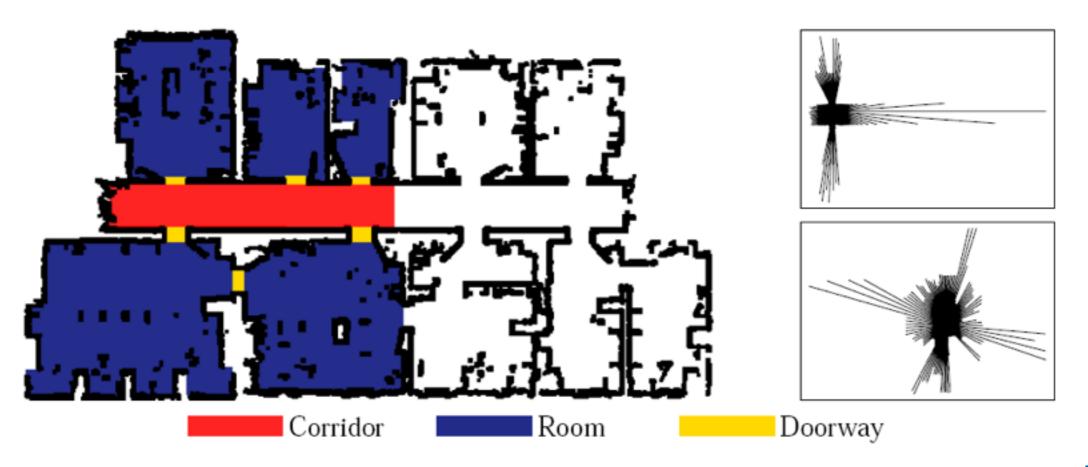
And: number of parameters is nK(K-1) + const.

Machine Learning for Computer Vision



# Example

- Place recognition for mobile robots
- 3 different states: corridor, room, doorway
- Problem: misclassifications
- Idea: use information from previous time step





# **General Formulation of an HMM**

- 1.Discrete random variables
  - **Observation** variables:  $\{z_n\}, n = 1..N$
  - Discrete **state** variables (unobservable):  $\{x_n\}, n = 1..N$
  - **Number** of states  $K: x_n \in \{1...K\}$

2. Transition model  $p(x_i | x_{i-1})$ 

- Markov assumption ( $x_i$  only depends on  $x_i$ )
- Represented as a *K*×*K* transition matrix *A*
- Initial probability:  $p(x_0)$  repr. as  $\pi_1, \pi_2, \pi_3$

3. Observation model  $p(z_i|x_i)$  with parameters  $\varphi$ 

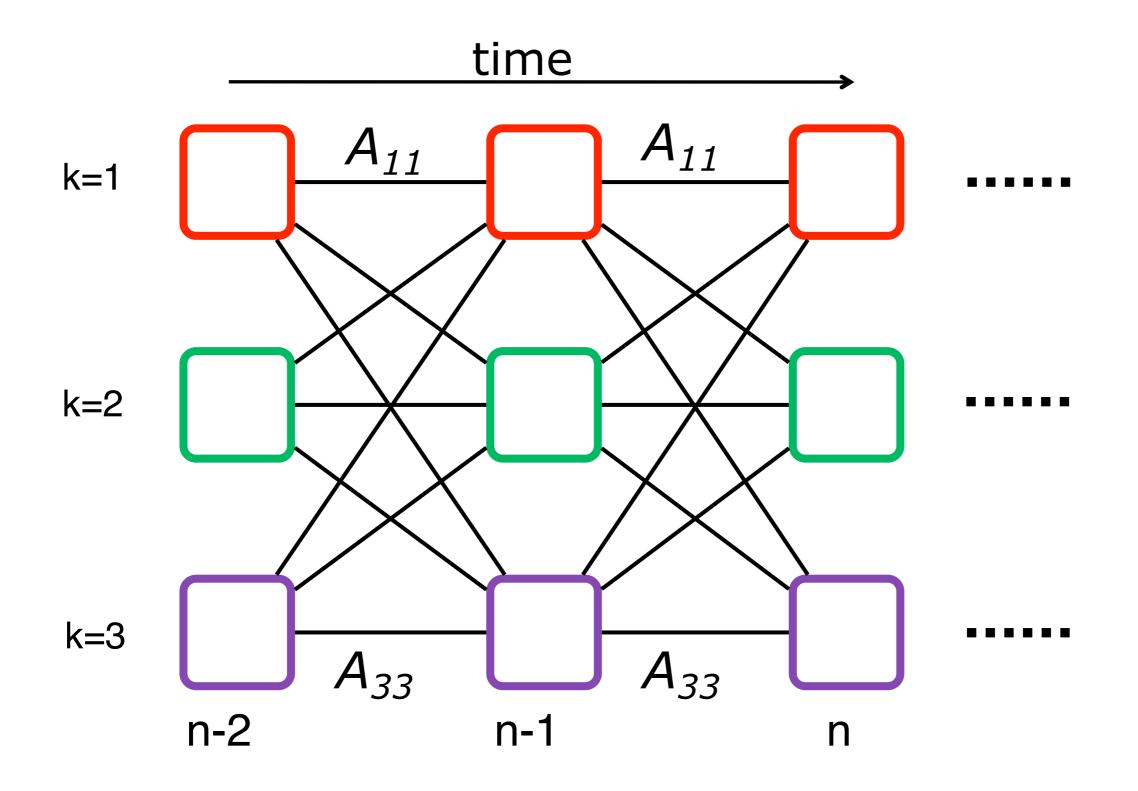
- Observation only depends on the current state
- Example: output of a "local" place classifier



Model Parameters

θ

#### **The Trellis Representation**





# **Application Example (1)**

- Given an observation sequence  $z_1, z_2, z_3...$
- Assume that the model parameters  $\theta = (A, \pi, \phi)$  are known
- What is the probability that the given observation sequence is actually observed under this model,
   i.e. the data likelihood p(Z| θ)?
- If we are given several different models, we can choose the one with highest probability
- Expressed as a supervised learning problem, this can be interpreted as the inference step (classification step)

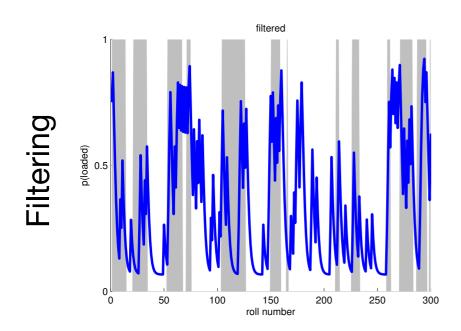


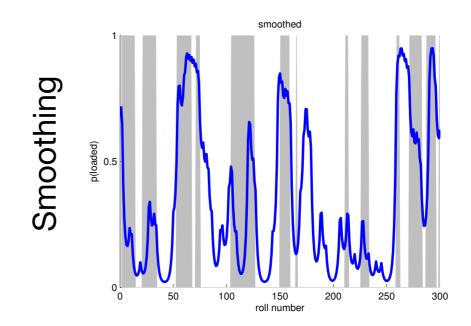


# **Application Example (2)**

Based on the data likelihood we can solve two different kinds of problems:

- Filtering: computes  $p(\mathbf{x}_n | \mathbf{z}_{1:n})$ , i.e. state probability only based on previous observations
- Smoothing: computes p(x<sub>n</sub> | z<sub>1:N</sub>), state probability based on all observations (including those from the future)







# **Application Example (3)**

- Given an observation sequence  $z_1, z_2, z_3...$
- Assume that the model parameters  $\theta = (A, \pi, \varphi)$  are known
- What is the state sequence x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>... that
   explains best the given observation sequence?
- In the case of place recognition: which is the sequence of truly visited places that explains best the sequence of obtained place labels (classifications)?





# **Application Example (4)**

- Given an observation sequence  $z_1, z_2, z_3...$
- What are the optimal model parameters  $\theta = (A, \pi, \phi)$ ?
- This can be interpreted as the training step
- It is in general the most difficult problem



# Summary: 4 Operations on HMMs

- **1.** Compute data likelihood  $p(Z|\theta)$  from a known model
  - Can be computed with the forward algorithm
- 2. Filtering or Smoothing of the state probability
  - Filtering: forward algorithm
  - Smoothing: forward-backward algorithm
- 3. Compute optimal state sequence with a known model
  - Can be computed with the Viterbi-Algorithm
- 4. Learn model parameters for an observation sequence
  - Can be computed using Expectation-Maximization (or Baum-Welch)





Goal: compute  $p(Z|\theta)$  (we drop  $\theta$  in the following)

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_n) = \sum_{\mathbf{x}_n} p(\mathbf{z}_1,\ldots,\mathbf{z}_n,\mathbf{x}_n) =: \sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)$$





Goal: compute  $p(Z|\theta)$  (we drop  $\theta$  in the following)

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_n) = \sum_{\mathbf{x}_n} p(\mathbf{z}_1,\ldots,\mathbf{z}_n,\mathbf{x}_n) =: \sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)$$

We can calculate  $\alpha$  recursively:

$$\alpha(\mathbf{x}_n) = p(\mathbf{z}_n \mid \mathbf{x}_n) \sum_{\mathbf{x}_{n-1}} \alpha(\mathbf{x}_{n-1}) p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$$



Goal: compute  $p(Z|\theta)$  (we drop  $\theta$  in the following)

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_n) = \sum_{\mathbf{x}_n} p(\mathbf{z}_1,\ldots,\mathbf{z}_n,\mathbf{x}_n) =: \sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)$$

We can calculate  $\alpha$  recursively:

$$\alpha(\mathbf{x}_n) = p(\mathbf{z}_n \mid \mathbf{x}_n) \sum_{\mathbf{x}_{n-1}} \alpha(\mathbf{x}_{n-1}) p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$$

This is (almost) the same recursive formula as we had in the first lecture!



Goal: compute  $p(Z|\theta)$  (we drop  $\theta$  in the following)

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_n) = \sum_{\mathbf{x}_n} p(\mathbf{z}_1,\ldots,\mathbf{z}_n,\mathbf{x}_n) =: \sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)$$

We can calculate  $\alpha$  recursively:

$$\alpha(\mathbf{x}_n) = p(\mathbf{z}_n \mid \mathbf{x}_n) \sum_{\mathbf{x}_{n-1}} \alpha(\mathbf{x}_{n-1}) p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$$

This is (almost) the same recursive formula as we had in the first lecture!

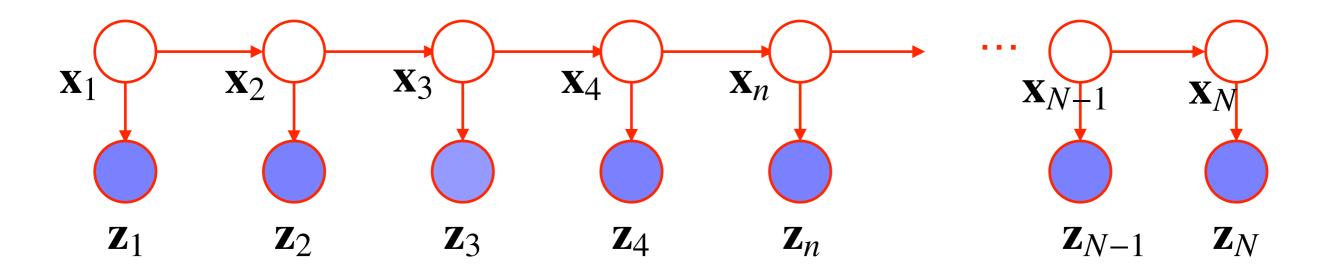
Filtering: 
$$p(\mathbf{x}_n | \mathbf{z}_1, \dots, \mathbf{z}_n) = \frac{p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n)}{p(\mathbf{z}_1, \dots, \mathbf{z}_n)} = \frac{\alpha(\mathbf{x}_n)}{\sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)}$$



#### **The Forward-Backward Algorithm**

- As before we set  $\alpha(\mathbf{x}_n) = p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n)$
- We also define  $\beta(\mathbf{x}_n) = p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N \mid \mathbf{x}_n)$

e.g. *n* = 5:





#### **The Forward-Backward Algorithm**

- As before we set  $\alpha(\mathbf{x}_n) = p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n)$
- We also define  $\beta(\mathbf{x}_n) = p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N \mid \mathbf{x}_n)$
- This can be recursively computed (backwards):

$$\beta(\mathbf{x}_{n-1}) = p(\mathbf{z}_n, \dots, \mathbf{z}_N | \mathbf{x}_{n-1})$$

$$= \sum_{\mathbf{x}_n} p(\mathbf{x}_n, \mathbf{z}_n, \dots, \mathbf{z}_N | \mathbf{x}_{n-1})$$

$$= \sum_{\mathbf{x}_n} p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N | \mathbf{x}_n, \mathbf{z}_n, \mathbf{x}_{n-1}) p(\mathbf{x}_n, \mathbf{z}_n | \mathbf{x}_{n-1})$$

$$= \sum_{\mathbf{x}_n} p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N | \mathbf{x}_n) p(\mathbf{z}_n | \mathbf{z}_{n-1}, \mathbf{x}_n) p(\mathbf{x}_n | \mathbf{x}_{n-1})$$

$$= \sum_{\mathbf{x}_n} \beta(\mathbf{x}_n) p(\mathbf{z}_n | \mathbf{x}_n) p(\mathbf{x}_n | \mathbf{x}_{n-1})$$



### **The Forward-Backward Algorithm**

- As before we set  $\alpha(\mathbf{x}_n) = p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n)$
- We also define  $\beta(\mathbf{x}_n) = p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N \mid \mathbf{x}_n)$
- This can be recursively computed (backwards):

$$\beta(\mathbf{x}_n) = \sum_{\mathbf{x}_{n+1}} \beta(\mathbf{x}_{n+1}) p(\mathbf{z}_{n+1} \mid \mathbf{x}_{n+1}) p(\mathbf{x}_{n+1} \mid \mathbf{x}_n)$$

- This is also known as the message-passing algorithm ("sum-product")!
  - forward messages  $\alpha_n$  (vector of length *K*)
  - backward messages  $\beta_n$  (vector of length *K*)



## **Smoothing with Forward-Backward**

First we compute  $p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N)$ :

 $p(\mathbf{x}_n, \mathbf{z}_1, \ldots, \mathbf{z}_N) = p(\mathbf{z}_1, \ldots, \mathbf{z}_N \mid \mathbf{x}_n) p(\mathbf{x}_n)$ 

$$= p(\mathbf{z}_1, \dots, \mathbf{z}_n | \mathbf{x}_n) p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N | \mathbf{x}_n) p(\mathbf{x}_n)$$
$$= p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n) p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N | \mathbf{x}_n)$$
$$= \alpha(\mathbf{x}_n) \beta(\mathbf{x}_n)$$



## **Smoothing with Forward-Backward**

First we compute  $p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N)$ :

 $p(\mathbf{x}_n, \mathbf{z}_1, \ldots, \mathbf{z}_N) = \alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)$ 

with that we can compute  $p(\mathbf{z}_1, \ldots, \mathbf{z}_N)$ :

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_N) = \sum_{\mathbf{x}_n} p(\mathbf{x}_n,\mathbf{z}_1,\ldots,\mathbf{z}_N) = \sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)$$



### **Smoothing with Forward-Backward**

First we compute  $p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N)$ :

 $p(\mathbf{x}_n, \mathbf{z}_1, \ldots, \mathbf{z}_N) = \alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)$ 

with that we can compute  $p(\mathbf{z}_1, \ldots, \mathbf{z}_N)$ :

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_N) = \sum_{\mathbf{x}_n} p(\mathbf{x}_n,\mathbf{z}_1,\ldots,\mathbf{z}_N) = \sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)$$

and finally:

$$p(\mathbf{x}_n \mid \mathbf{z}_1, \dots, \mathbf{z}_N) = \frac{p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N)}{p(\mathbf{z}_1, \dots, \mathbf{z}_N)} = \frac{\alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)}{\sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)}$$

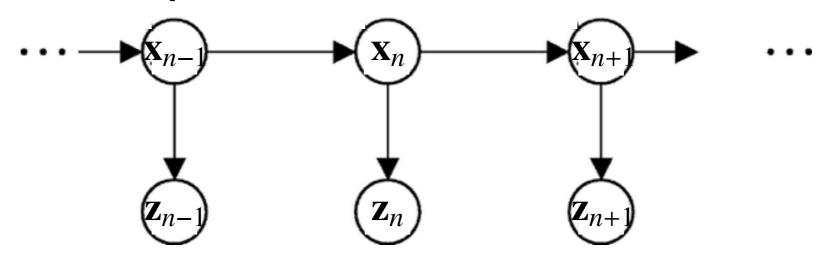


# 2. Computing the Most Likely States

• Goal: find a state sequence  $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots$  that maximizes the probability  $p(X, Z | \theta)$ 

• Define 
$$\delta(\mathbf{x}_n) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_n \mid \mathbf{z}_1, \dots, \mathbf{z}_n)$$

This is the probability of state *j* by taking the most probable path.





# 2. Computing the Most Likely States

• Goal: find a state sequence  $x_1, x_2, x_3...$  that maximizes the probability  $p(X,Z|\theta)$ 

• Define 
$$\delta(\mathbf{x}_n) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_n \mid \mathbf{z}_1, \dots, \mathbf{z}_n)$$

# This can be computed recursively: $\delta(\mathbf{x}_n) = \max_{\mathbf{x}_{n-1}} \delta(\mathbf{x}_{n-1}) p(\mathbf{x}_n | \mathbf{x}_{n-1}) p(\mathbf{z}_n, | \mathbf{x}_n)$

we also have to compute the argmax:

$$\psi(\mathbf{x}_n) = \arg \max_{\mathbf{x}_{n-1}} \delta(\mathbf{x}_{n-1}) p(\mathbf{x}_n \mid \mathbf{x}_{n-1}) p(\mathbf{z}_n, \mid \mathbf{x}_n)$$



# The Viterbi algorithm

- Initialize:
  - $\delta(\mathbf{x}_0) = p(\mathbf{x}_0) p(\mathbf{z}_0 | \mathbf{x}_0)$
  - $\psi(\mathbf{x}_0) = 0$
- Compute recursively for *n*=1...*N*:
  - $\delta(\mathbf{x}_n) = p(\mathbf{z}_n | \mathbf{x}_n) \max_{\mathbf{x}_{n-1}} [\delta(\mathbf{x}_{n-1}) p(\mathbf{x}_n | \mathbf{x}_{n-1})]$
  - $\psi(\mathbf{x}_n) = \underset{x_{n-1}}{\operatorname{argmax}} \left[ \delta(\mathbf{x}_{n-1}) p(\mathbf{x}_n | \mathbf{x}_{n-1}) \right]$
- On termination:
  - $p(Z,X|\theta) = \max_{x_N} \delta(x_N)$ •  $x_N^* = \operatorname*{argmax}_{x_N} \delta(x_N)$
- Backtracking:

• 
$$\mathbf{x}_n^* = \psi(\mathbf{x}_{n+1})$$



## **3. Learning the Model Parameters**

- Given an observation sequence  $z_1, z_2, z_3...$
- Find optimal model parameters  $\theta = \pi, A, \varphi$
- We need to maximize the likelihood  $p(Z|\theta)$
- Can not be solved in closed form
- Iterative algorithm "Baum-Welch": a special case of the Expectation Maximization (EM) algorithm



## **3. Learning the Model Parameters**

Idea: instead of maximizing

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_N \mid \theta) = \sum_X p(\mathbf{z}_1,\ldots,\mathbf{z}_N,\mathbf{x}_1,\ldots,\mathbf{x}_N \mid \theta)$$

• we maximize the expected log likelihood:

$$\sum_{X} p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \mathbf{z}_1, \dots, \mathbf{z}_N, \theta) \log p(\mathbf{z}_1, \dots, \mathbf{z}_N, \mathbf{x}_1, \dots, \mathbf{x}_N \mid \theta)$$

- it can be shown that this is a lower bound of the actual log-likelihood  $p(Z|\theta)$
- this is the general idea of the Expectation-Maximization (EM) algorithm



- E-Step (assuming we know  $\pi, A, \varphi$ , i.e.  $\theta^{old}$ )
- Define the posterior probability of being in state i at step k:
- Define  $\gamma(\mathbf{x}_n) = p(\mathbf{x}_n | Z)$





- E-Step (assuming we know  $\pi, A, \varphi$ , i.e.  $\theta^{old}$ )
- Define the posterior probability of being in state i at step k:
- Define  $\gamma(\mathbf{x}_n) = p(\mathbf{x}_n | \mathbf{z}_1, \dots, \mathbf{z}_N)$
- It follows that  $\gamma(\mathbf{x}_n) = \alpha(\mathbf{x}_n) \beta(\mathbf{x}_n) / p(Z)$



- E-Step (assuming we know  $\pi, A, \varphi$ , i.e.  $\theta^{old}$ )
- Define the posterior probability of being in state i at step k:
- Define  $\gamma(\mathbf{x}_n) = p(\mathbf{x}_n | \mathbf{z}_1, \dots, \mathbf{z}_n)$
- It follows that  $\gamma(\mathbf{x}_n) = \alpha(\mathbf{x}_n) \beta(\mathbf{x}_n) / p(Z)$
- Define  $\xi(\mathbf{x}_{n-1},\mathbf{x}_n) = p(\mathbf{x}_{n-1},\mathbf{x}_n|Z)$
- It follows that

$$\xi(\mathbf{x}_{n-1},\mathbf{x}_n) = \alpha(\mathbf{x}_{n-1})p(\mathbf{z}_n|\mathbf{x}_n)p(\mathbf{x}_n|\mathbf{x}_{n-1})\beta(\mathbf{x}_n) / p(\mathbf{Z})$$



- Note:  $\gamma(\mathbf{x}_n)$  is a vector of length *K*; each entry  $\gamma_k(\mathbf{x}_n)$  represents the probability that the state at time *n* is equal to  $k \in \{1, ..., K\}$
- Thus: The **expected** number of transitions from state *k* in the sequence *X* is

$$\sum_{i=1}^N \gamma_k(\mathbf{x}_i)$$



- Note:  $\gamma(\mathbf{x}_n)$  is a vector of length *K*; each entry  $\gamma_k(\mathbf{x}_n)$  represents the probability that the state at time *n* is equal to  $k \in \{1, ..., K\}$
- Thus: The **expected** number of transitions from state k in the sequence X is  $\sum_{i=1}^{N} \gamma_k(\mathbf{x}_i)$
- Similarly: The expected number of transitions from state *j* to state k in the sequence X is

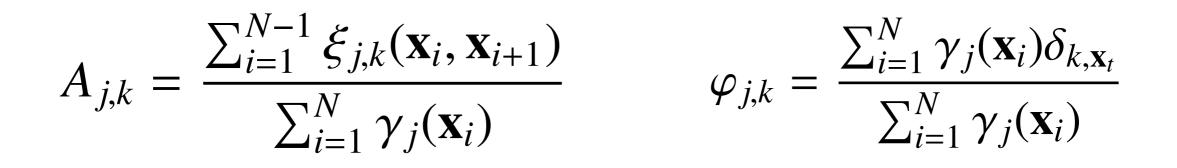
$$\sum_{i=1}^{N-1} \xi_{j,k}(\mathbf{x}_i, \mathbf{x}_{i+1})$$



# The Baum-Welsh algorithm

• With that we can compute new values for  $\pi, A, \varphi$ :

 $\pi_k = \gamma_k(\mathbf{x}_1)$ 



here, we need forward and backward step!

 This is done until the likelihood does not increase anymore (convergence)



#### The Baum-Welsh Algorithm - Summary

- Start with an initial estimate of  $\theta = (\pi, A, \varphi)$ e.g. uniformly and k-means for  $\varphi$
- Compute messages (E-Step)
- Compute new  $\theta = (\pi, A, \varphi)$  (M-step)
- Iterate E and M until convergence
- In each iteration one full application of the forward-backward algorithm is performed
- Result gives a local optimum
- For other local optima, the algorithm needs to be started again with new initialization



# Summary

- HMMs are a way to model sequential data
- They assume discrete states
- Three possible operations can be performed with HMMs:
  - Data likelihood, given a model and an observation
  - Most likely state sequence, given a model and an observation
  - Optimal Model parameters, given an observation
- Appropriate scaling solves numerical problems
- HMMs are widely used, e.g. in speech recognition





Computer Vision Group Prof. Daniel Cremers

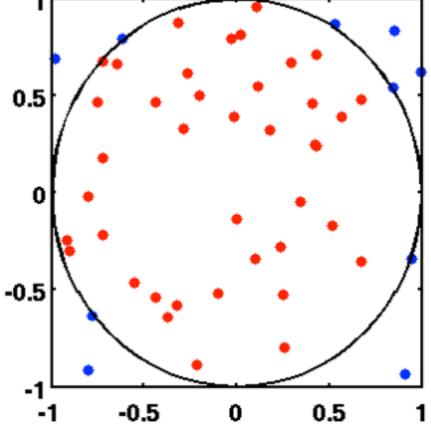
Technische Universität München

# 9. Sampling Methods

# **Sampling Methods**

Sampling Methods are widely used in Computer Science

- as an approximation of a deterministic algorithm
- to represent uncertainty without a parametric model
- to obtain higher computational efficiency with a small approximation error
- Sampling Methods are also often called Monte Carlo Methods
- Example: Monte-Carlo Integration
  - Sample in the bounding box
  - Compute fraction of inliers
  - Multiply fraction with box size





#### **Non-Parametric Representation**

Probability distributions (e.g. a robot's belief) can be represeted:

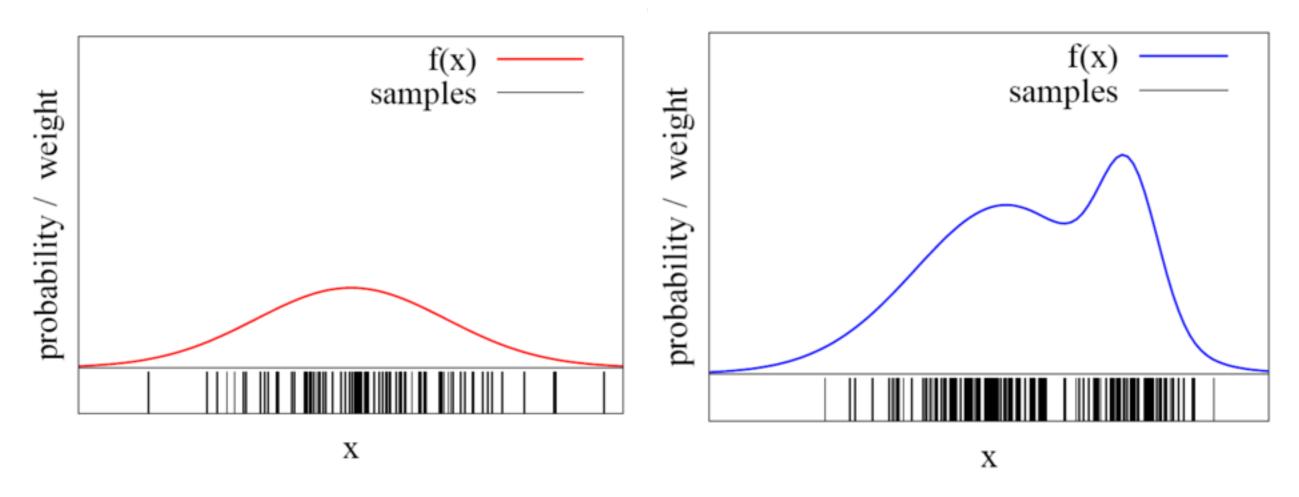
- Parametrically: e.g. using mean and covariance of a Gaussian
- Non-parametrically: using a set of hypotheses (samples) drawn from the distribution

Advantage of non-parametric representation:

 No restriction on the type of distribution (e.g. can be multi-modal, non- Gaussian, etc.)



#### **Non-Parametric Representation**



The more samples are in an interval, the higher the probability of that interval

#### But:

How to draw samples from a function/distribution?



## **Sampling from a Distribution**

There are several approaches:

- Probability transformation
  - Uses inverse of the c.d.f (not considered here)
- Rejection Sampling
- Importance Sampling
- Markov Chain Monte Carlo



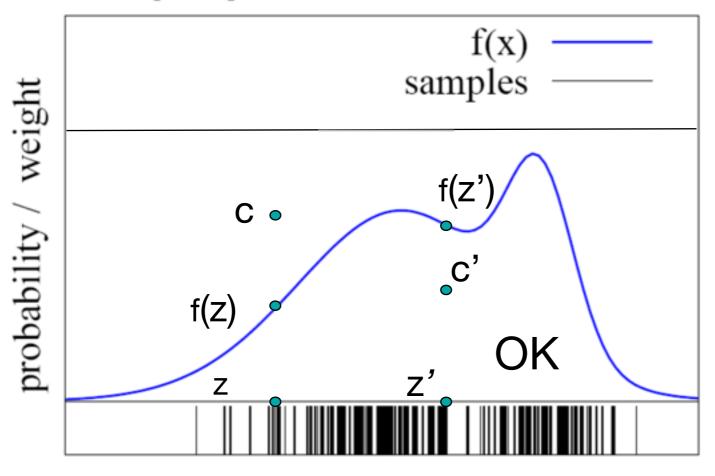
## **Rejection Sampling**

### 1. Simplification:

- Assume p(z) < 1 for all z
- Sample z uniformly
- Sample c from [0,1]

• If f(z) > c : keep the sample otherwise:

reject the sample



45

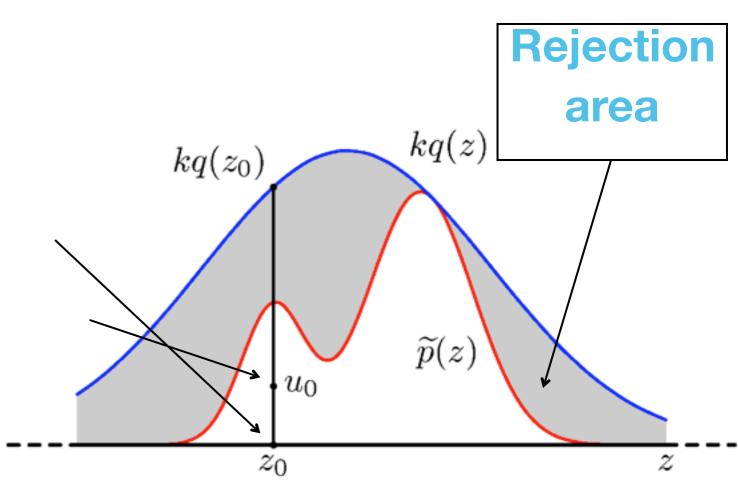


# **Rejection Sampling**

#### 2. General case:

Assume we can evaluate  $p(z) = \frac{1}{Z_n} \tilde{p}(z)$  (unnormalized)

- Find proposal distribution q
  - Easy to sample from q
- Find k with  $kq(z) \ge \tilde{p}(z)$
- Sample from q
- Sample uniformly from [0,kq(z<sub>0</sub>)]
- Reject if  $u_0 > \tilde{p}(z_0)$



#### But: Rejection sampling is inefficient.

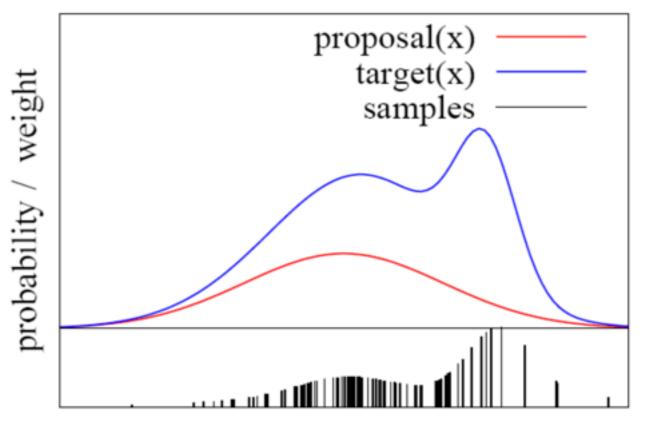


### **Importance Sampling**

- Idea: assign an importance weight w to each sample
- With the importance weights, we can account for the "differences between p and q "

w(x) = p(x)/q(x)

- p is called target
- q is called proposal (as before)





#### **Importance Sampling**

- Explanation: The prob. of falling in an interval A is the area under p
- This is equal to the expectation of the indicator function  $I(x \in A)$

$$E_p[I(z \in A)] = \int p(z)I(z \in A)dz$$



#### **Importance Sampling**

- Explanation: The prob. of falling in an interval A is the area under p
- This is equal to the expectation of the indicator function  $I(x \in A)$

$$E_p[I(z \in A)] = \int p(z)I(z \in A)dz$$

$$\sum_{A} p(z)$$

 $= \int \frac{p(z)}{q(z)} q(z) I(z \in A) dz = E_q[w(z)I(z \in A)]$ Requirement:  $p(x) > 0 \Rightarrow q(x) > 0$ 

Approximation with samples drawn from q:  $E_q[w(z)I(z \in A)] \approx \frac{1}{L} \sum_{l=1}^{L} w(z_l)I(z_l \in A)$ 

