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• This incorporates the following Markov assumptions:

Bayes Filter (Rep.)

We can describe the overall process using a 
Dynamic Bayes Network:

(measurement)

(state)
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• This incorporates the following Markov assumptions:

Bayes Filter Without Actions

Removing the action variables we obtain:

(measurement)

(state)

Discrete 
Variables

Notation 
differs from 

Bishop!
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A Model for Sequential Data

• Observations in sequential data should not be 
modeled as independent variables such as: 

• Examples: weather forecast, speech, hand-
written text, etc. 

• The observation at time t depends on the 
observation(s) of (an) earlier time step(s):
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A Model for Sequential Data

•The joint distribution is therefore (d-sep): 

•However: often data depends on several earlier 
observations (not just one)
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z1 z2 z3 z4 z5

…

p(z1 . . . zn) = p(z1)
nY

i=2

p(zi | zi�1)

z1 z2 z3 z4 z5

…
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A Model for Sequential Data

• Problem: number of stored parameters grows 
exponentially with the order of the Markov chain 

• Question: can we model dependency of all 
previous observations with a limited number of 
parameters?
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z1 z2 z3 z4 z5

…

p(z1 . . . zn) = p(z1)p(z2 | z1)
nY

i=3

p(zi | zi�1, zi�2)
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A Model for Sequential Data

Idea: Introduce hidden (unobserved) variables:
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z1 z2 z3 z4 z5

…
x1 x2 x3 x4 x5
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A Model for Sequential Data

Idea: Introduce hidden (unobserved) variables: 

Now we have: 

But: 

And: number of parameters is nK(K-1) + const.
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z1 z2 z3 z4 z5

…
x1 x2 x3 x4 x5

dsep(xn, {x1, . . . , xn�2}, xn�1)

, p(xn | x1, . . . , xn�2, xn�1) = p(xn | xn�1)

¬dsep(zn, {z1, . . . , zn�2}, zn�1)
, p(zn | z1, . . . , zn�2, zn�1) , p(zn | zn�1)
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Example

• Place recognition for mobile robots 

• 3 different states: corridor, room, doorway 

• Problem: misclassifications 

• Idea: use information from previous time step

9
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1.Discrete random variables  

• Observation variables: {zn}, n = 1..N  
• Discrete state variables (unobservable): {xn}, n = 1..N 
• Number of states K: xnє{1…K} 

2.Transition model p(xi |xi-1) 
• Markov assumption (xi only depends on xi-1) 

• Represented as a K×K transition matrix A 

• Initial probability: p(x0) repr. as  π1, π2, π3 

3.Observation model p(zi|xi) with parameters φ 

• Observation only depends on the current state 

• Example: output of a “local” place classifier

General Formulation of an HMM

Model Parameters 

θ

10
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The Trellis Representation

A33 A33

A11 A11k=1

k=2

k=3

time

n-2 n-1 n
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• Given an observation sequence z1,z2,z3… 

• Assume that the model parameters  
θ =(A, π, φ) are known 

• What is the probability that the given observation 
sequence is actually observed under this model, 

i.e. the data likelihood p(Z| θ)? 

• If we are given several different models, we can 
choose the one with highest probability 

• Expressed as a supervised learning problem, 
this can be interpreted as the inference step 
(classification step)

Application Example (1)

12
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Based on the data likelihood we can solve two 
different kinds of problems: 

• Filtering: computes               , i.e. state 
probability only based on previous observations 

• Smoothing: computes               , state 
probability based on all observations (including 
those from the future)

Application Example (2)
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• Given an observation sequence z1,z2,z3… 

• Assume that the model parameters  
θ =(A, π, φ) are known 

• What is the state sequence x1,x2,x3…  that 
explains best the given observation sequence? 

• In the case of place recognition: which is the 
sequence of truly visited places that explains 
best the sequence of obtained place labels 
(classifications)?

Application Example (3)
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• Given an observation sequence z1,z2,z3… 

• What are the optimal model parameters  
θ =(A, π, φ)? 

• This can be interpreted as the  
training step 

• It is in general the most difficult problem

Application Example (4)

15
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1. Compute data likelihood p(Z|θ) from a known model 
• Can be computed with the forward algorithm 

2. Filtering or Smoothing of the state probability 
• Filtering: forward algorithm 

• Smoothing: forward-backward algorithm 

3. Compute optimal state sequence with a known model 
• Can be computed with the Viterbi-Algorithm 

4. Learn model parameters for an observation sequence 
• Can be computed using Expectation-Maximization (or 

Baum-Welch)

Summary: 4 Operations on HMMs

16



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

The Forward Algorithm

Goal: compute p(Z|θ) (we drop θ in the following)

17

p(z1, . . . , zn) =
X

xn

p(z1, . . . , zn, xn) =:
X

xn

↵(xn)
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The Forward Algorithm

Goal: compute p(Z|θ) (we drop θ in the following) 

We can calculate α recursively: 
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p(z1, . . . , zn) =
X

xn

p(z1, . . . , zn, xn) =:
X

xn

↵(xn)

↵(xn) = p(zn | xn)
X

xn�1

↵(xn�1)p(xn | xn�1)
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The Forward Algorithm

Goal: compute p(Z|θ) (we drop θ in the following) 

We can calculate α recursively: 

This is (almost) the same recursive formula as we 
had in the first lecture! 
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The Forward Algorithm

Goal: compute p(Z|θ) (we drop θ in the following) 

We can calculate α recursively: 

This is (almost) the same recursive formula as we 
had in the first lecture! 

Filtering: 
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p(z1, . . . , zn) =
X

xn

p(z1, . . . , zn, xn) =:
X

xn

↵(xn)

↵(xn) = p(zn | xn)
X

xn�1

↵(xn�1)p(xn | xn�1)

p(xn | z1, . . . , zn) =
p(z1, . . . , zn, xn)

p(z1, . . . , zn)
=
↵(xn)
P

xn ↵(xn)
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• As before we set   

• We also define  

e.g. n = 5:

The Forward-Backward Algorithm
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↵(xn) = p(z1, . . . , zn, xn)

�(xn) = p(zn+1, . . . , zN | xn)

z1 z2 z3 z4

…
x1 x2 x3 x4 xn

zn zN�1 zN

xNxN�1
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• As before we set   

• We also define 

• This can be recursively computed (backwards): 

The Forward-Backward Algorithm
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↵(xn) = p(z1, . . . , zn, xn)

�(xn) = p(zn+1, . . . , zN | xn)

�(xn�1) = p(zn, . . . , zN | xn�1)
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• As before we set   

• We also define 

• This can be recursively computed (backwards):  

• This is also known as the message-passing 
algorithm (“sum-product”)! 

• forward messages αn (vector of length K) 

• backward messages βn (vector of length K)

The Forward-Backward Algorithm
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↵(xn) = p(z1, . . . , zn, xn)

�(xn) = p(zn+1, . . . , zN | xn)

�(xn) =
X

xn+1

�(xn+1)p(zn+1 | xn+1)p(xn+1 | xn)
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Smoothing with Forward-Backward

First we compute                      :
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p(xn, z1, . . . , zN)

p(xn, z1, . . . , zN) = p(z1, . . . , zN | xn)p(xn)

= p(z1, . . . , zn | xn)p(zn+1, . . . , zN | xn)p(xn)

= p(z1, . . . , zn, xn)p(zn+1, . . . , zN | xn)

= ↵(xn)�(xn)
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Smoothing with Forward-Backward

First we compute                      : 

with that we can compute                  : 
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p(xn, z1, . . . , zN)

p(xn, z1, . . . , zN) = ↵(xn)�(xn)

p(z1, . . . , zN)

p(z1, . . . , zN) =
X

xn

p(xn, z1, . . . , zN) =
X

xn

↵(xn)�(xn)
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Smoothing with Forward-Backward

First we compute                      : 

with that we can compute                  :  

and finally:
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p(xn, z1, . . . , zN)

p(xn, z1, . . . , zN) = ↵(xn)�(xn)

p(z1, . . . , zN)

p(z1, . . . , zN) =
X

xn

p(xn, z1, . . . , zN) =
X
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↵(xn)�(xn)

p(xn | z1, . . . , zN) =
p(xn, z1, . . . , zN)

p(z1, . . . , zN)
=
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P
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• Goal: find a state sequence x1,x2,x3… that 

maximizes the probability p(X,Z|θ) 

• Define 
 
This is the probability of state j by taking the 
most probable path. 

2. Computing the Most Likely States

27
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• Goal: find a state sequence x1,x2,x3… that 

maximizes the probability p(X,Z|θ) 

• Define 
 
This can be computed recursively:  
 
 
we also have to compute the argmax:

2. Computing the Most Likely States

28
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• Initialize: 

• δ(x0) = p(x0) p(z0 | x0) 
• ψ(x0) = 0 

• Compute recursively for n=1…N: 

• δ(xn)= p(zn|xn)  max [δ(xn-1) p(xn|xn-1)] 

• ψ(xn)= argmax [δ(xn-1) p(xn|xn-1)] 

• On termination: 

• p(Z,X|θ) = max δ(xN) 
• xN = argmax δ(xN) 

• Backtracking: 

• xn = ψ(xn+1)

The Viterbi algorithm

xn-1 

xn-1 

*
xN 

xN 

*
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• Given an observation sequence z1,z2,z3… 

• Find optimal model parameters θ= π,A,φ 

• We need to maximize the likelihood p(Z|θ) 
• Can not be solved in closed form 

• Iterative algorithm “Baum-Welch”: a special 
case of the Expectation Maximization (EM) 
algorithm

3. Learning the Model Parameters

30
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3. Learning the Model Parameters

• Idea: instead of maximizing 

• we maximize the expected log likelihood: 

• it can be shown that this is a lower bound of the 

actual log-likelihood p(Z|θ) 
• this is the general idea of the Expectation-

Maximization (EM) algorithm

31

p(z1, . . . , zN | ✓) =
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• E-Step (assuming we know π,A,φ, i.e. θold) 

• Define the posterior probability of being in state 
i at step k: 

• Define γ(xn)= p(xn|Z)

The Baum-Welsh algorithm

32
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• E-Step (assuming we know π,A,φ, i.e. θold) 

• Define the posterior probability of being in state 
i at step k: 

• Define γ(xn)= p(xn|z1,…,zN) 
• It follows that  γ(xn)= α(xn) β(xn) / p(Z)

The Baum-Welsh algorithm

33
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• E-Step (assuming we know π,A,φ, i.e. θold) 

• Define the posterior probability of being in state 
i at step k: 

• Define γ(xn)= p(xn|z1,…,zn) 
• It follows that  γ(xn)= α(xn) β(xn) / p(Z) 
• Define ξ(xn-1 ,xn)= p(xn-1 ,xn|Z) 
• It follows that   
ξ(xn-1 ,xn)= α(xn-1)p(zn|xn)p(xn|xn-1)β(xn) / p(Z)

The Baum-Welsh algorithm

34
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The Baum-Welsh algorithm

• Note: γ(xn) is a vector of length K; each entry 

γk(xn) represents the probability that the state at 

time n is equal to k ∊{1,…K} 
• Thus: The expected number of transitions from 

state k in the sequence X is

35

NX

i=1

�k(xi)
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The Baum-Welsh algorithm

• Note: γ(xn) is a vector of length K; each entry 

γk(xn) represents the probability that the state at 

time n is equal to k ∊{1,…K} 
• Thus: The expected number of transitions from 

state k in the sequence X is 

• Similarly: The expected number of transitions 

from state j to state k in the sequence X is

36

NX

i=1

�k(xi)

N�1X

i=1

⇠ j,k(xi, xi+1)
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• With that we can compute new values for π,A,φ: 

 

 
here, we need forward and backward step! 

• This is done until the likelihood does not 
increase anymore (convergence)

The Baum-Welsh algorithm

37

Aj,k =

PN�1
i=1 ⇠ j,k(xi, xi+1)
PN

i=1 � j(xi)
' j,k =

PN
i=1 � j(xi)�k,xtPN

i=1 � j(xi)

⇡k = �k(x1)
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• Start with an initial estimate of θ=(π,A,φ)  
e.g. uniformly and k-means for φ 

• Compute messages  (E-Step) 

• Compute new θ=(π,A,φ) (M-step) 

• Iterate E and M until convergence  

• In each iteration one full application of the 
forward-backward algorithm is performed 

• Result gives a local optimum 

• For other local optima, the algorithm needs to 
be started again with new initialization

The Baum-Welsh Algorithm - Summary

38
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• HMMs are a way to model sequential data 

• They assume discrete states 

• Three possible operations can be performed 
with HMMs: 

•Data likelihood, given a model and an observation 

•Most likely state sequence, given a model and an 
observation 

•Optimal Model parameters, given an observation 

• Appropriate scaling solves numerical problems 

• HMMs are widely used, e.g. in speech 
recognition 

Summary

39
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Sampling Methods
Sampling Methods are widely used in Computer 
Science 

• as an approximation of a deterministic algorithm 

• to represent uncertainty without a parametric model 

• to obtain higher computational efficiency with a 
small approximation error 

Sampling Methods are also often 
called Monte Carlo Methods 

Example: Monte-Carlo Integration 

• Sample in the bounding box 

• Compute fraction of inliers 

•Multiply fraction with box size

41
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Non-Parametric Representation

Probability distributions (e.g. a robot‘s belief) can 
be represeted: 

• Parametrically: e.g. using mean and covariance 
of a Gaussian 

• Non-parametrically: using a set of hypotheses 
(samples) drawn from the distribution 

Advantage of non-parametric representation: 

• No restriction on the type of distribution (e.g. can 
be multi-modal, non- Gaussian, etc.)
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Non-Parametric Representation

The more samples are in an interval, the higher the probability 

of that interval 

But: 

How to draw samples from a function/distribution?

43
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Sampling from a Distribution

There are several approaches: 

• Probability transformation 

• Uses inverse of the c.d.f (not considered here) 

• Rejection Sampling 

• Importance Sampling 

• Markov Chain Monte Carlo

44
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• If                :  
 keep the sample 
otherwise:  
 reject the sample 

Rejection Sampling

1. Simplification: 

• Assume                for all z 

• Sample z uniformly 

• Sample c from 

c

f(z)
c’

z’

f(z’)

OK
z
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Rejection Sampling

2. General case: 

Assume we can evaluate 

• Find proposal distribution q 

• Easy to sample from q 

• Find k with 

• Sample from q   

• Sample uniformly  
from [0,kq(z0)] 

• Reject if  

But: Rejection sampling is inefficient.

(unnormalized)

Rejection 

area

46
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•Idea:  assign an importance weight w to each 

sample 

•With the importance weights, we can account for the 

“differences between p and q ” 

•p is called target 

•q is called proposal  
(as before)

Importance Sampling

47
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•Explanation: The prob. of falling  
in an interval A is the area under p 

•This is equal to the expectation of  
the indicator function 

Importance Sampling

A
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•Explanation: The prob. of falling  
in an interval A is the area under p 

•This is equal to the expectation of  
the indicator function 

Approximation with  
samples drawn from q:

Importance Sampling

Requirement:

A
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