

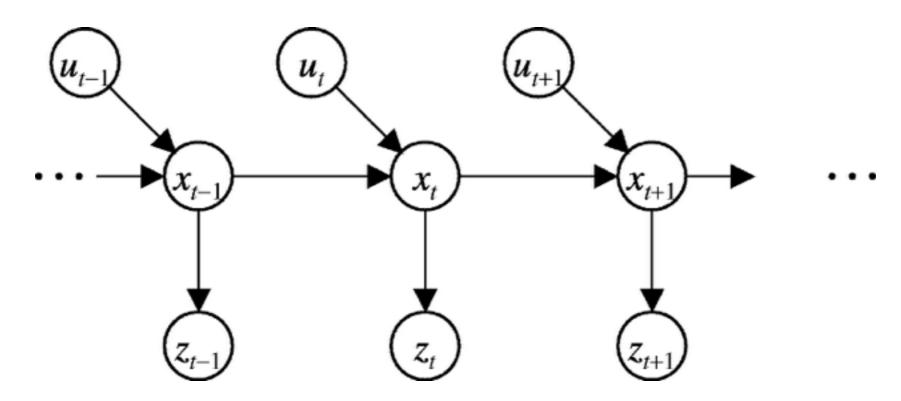
Computer Vision Group Prof. Daniel Cremers

Technische Universität München

7. Sequential Data

Bayes Filter (Rep.)

We can describe the overall process using a Dynamic Bayes Network:



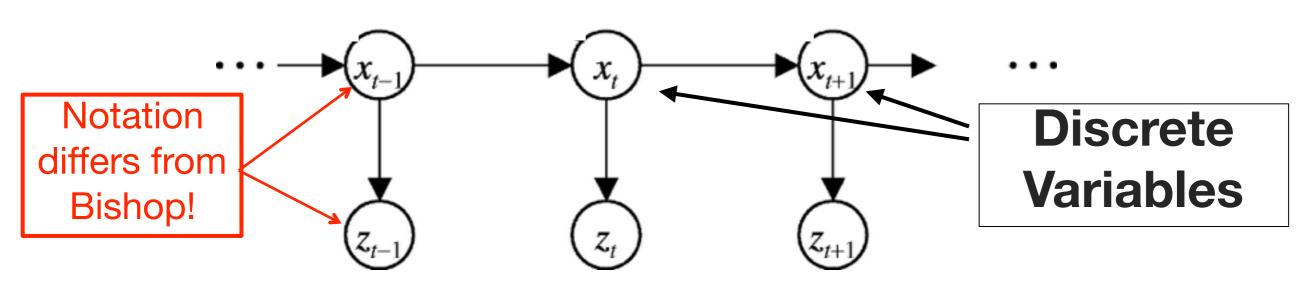
• This incorporates the following Markov assumptions:

$$p(z_t \mid x_{0:t}, u_{1:t}, z_{1:t}) = p(z_t \mid x_t) \text{ (measurement)}$$

$$p(x_t \mid x_{0:t-1}, u_{1:t}, z_{1:t}) = p(x_t \mid x_{t-1}, u_t) \text{ (state)}$$

Bayes Filter Without Actions

Removing the action variables we obtain:



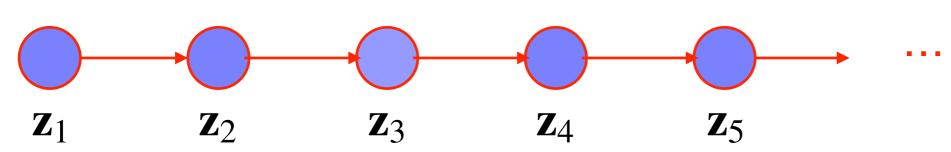
• This incorporates the following Markov assumptions:

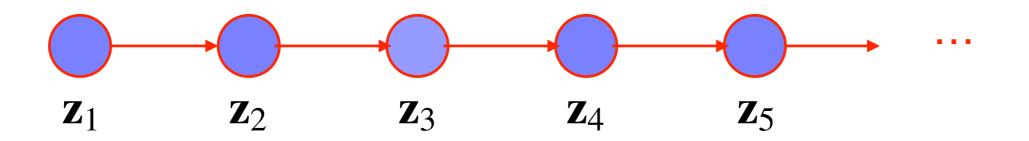
$$p(z_t \mid x_{0:t}, \quad z_{1:t}) = p(z_t \mid x_t) \text{ (measurement)}$$

$$p(x_t \mid x_{0:t-1}, \quad z_{1:t}) = p(x_t \mid x_{t-1}) \text{ (state)}$$

 Observations in sequential data should not be modeled as independent variables such as:

- Examples: weather forecast, speech, handwritten text, etc.
- The observation at time t depends on the observation(s) of (an) earlier time step(s):

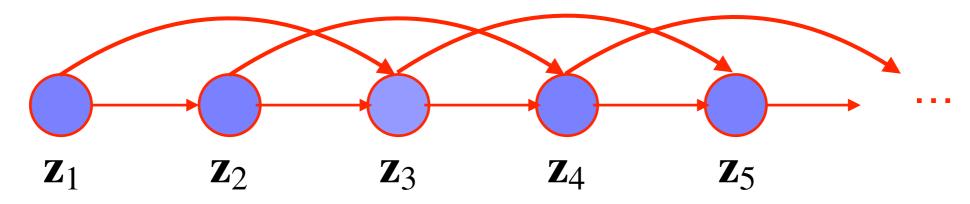


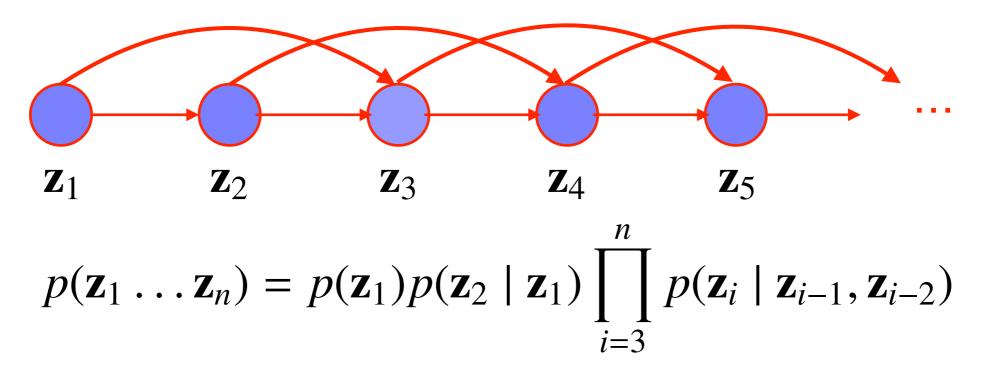


• The joint distribution is therefore (d-sep):

$$p(\mathbf{z}_1 \dots \mathbf{z}_n) = p(\mathbf{z}_1) \prod_{i=2}^n p(\mathbf{z}_i \mid \mathbf{z}_{i-1})$$

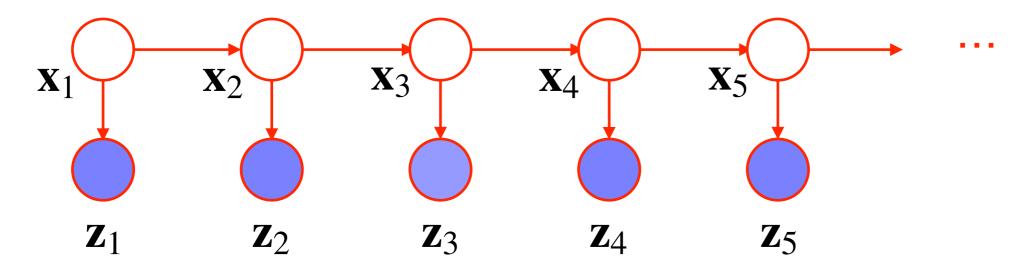
 However: often data depends on several earlier observations (not just one)



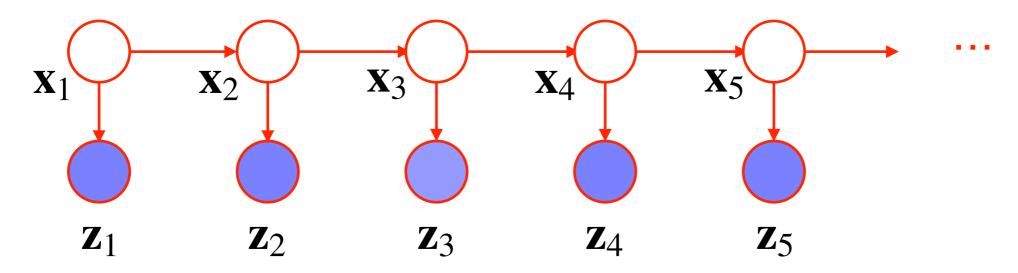


- Problem: number of stored parameters grows exponentially with the order of the Markov chain
- Question: can we model dependency of all previous observations with a limited number of parameters?

Idea: Introduce hidden (unobserved) variables:



Idea: Introduce hidden (unobserved) variables:



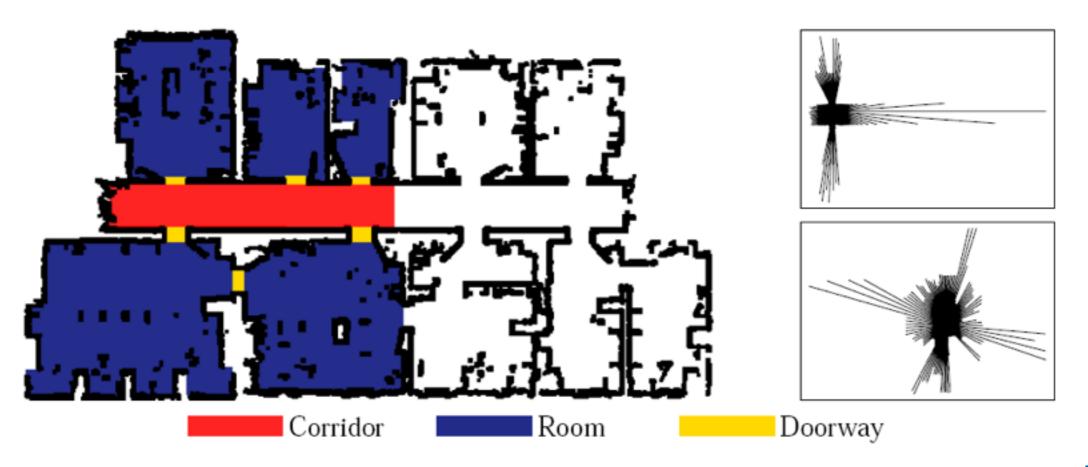
Now we have: dsep($\mathbf{x}_n, \{\mathbf{x}_1, \dots, \mathbf{x}_{n-2}\}, \mathbf{x}_{n-1}$) $\Leftrightarrow p(\mathbf{x}_n \mid \mathbf{x}_1, \dots, \mathbf{x}_{n-2}, \mathbf{x}_{n-1}) = p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$ But: $\neg dsep(\mathbf{z}_n, \{\mathbf{z}_1, \dots, \mathbf{z}_{n-2}\}, \mathbf{z}_{n-1})$ $\Leftrightarrow p(\mathbf{z}_n \mid \mathbf{z}_1, \dots, \mathbf{z}_{n-2}, \mathbf{z}_{n-1}) \neq p(\mathbf{z}_n \mid \mathbf{z}_{n-1})$

And: number of parameters is nK(K-1) + const.

Machine Learning for Computer Vision

Example

- Place recognition for mobile robots
- 3 different states: corridor, room, doorway
- Problem: misclassifications
- Idea: use information from previous time step



General Formulation of an HMM

- 1.Discrete random variables
 - **Observation** variables: $\{z_n\}, n = 1..N$
 - Discrete **state** variables (unobservable): $\{x_n\}, n = 1..N$
 - **Number** of states $K: x_n \in \{1...K\}$

2. Transition model $p(x_i | x_{i-1})$

- Markov assumption (x_i only depends on x_i)
- Represented as a *K*×*K* transition matrix *A*
- Initial probability: $p(x_0)$ repr. as π_1, π_2, π_3

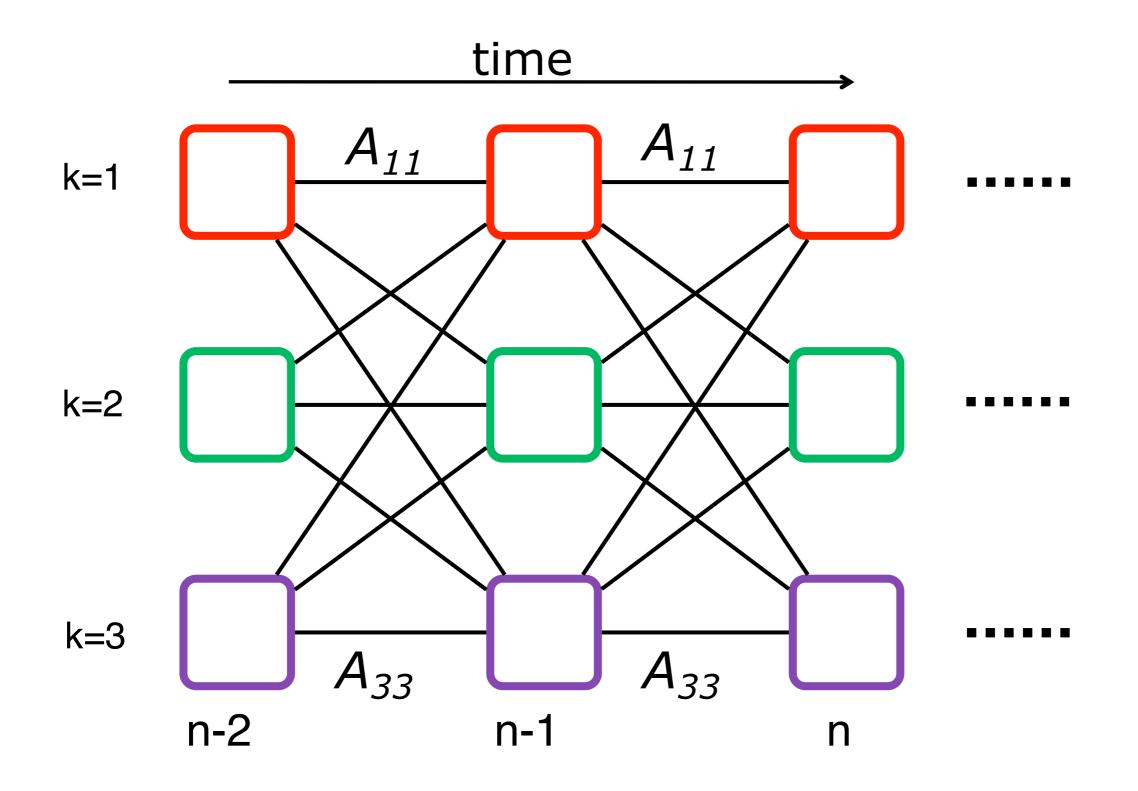
3. Observation model $p(z_i|x_i)$ with parameters φ

- Observation only depends on the current state
- Example: output of a "local" place classifier

Model Parameters

θ

The Trellis Representation



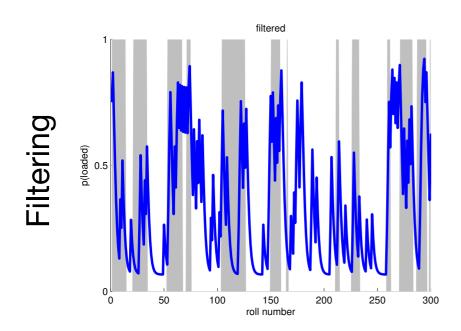
Application Example (1)

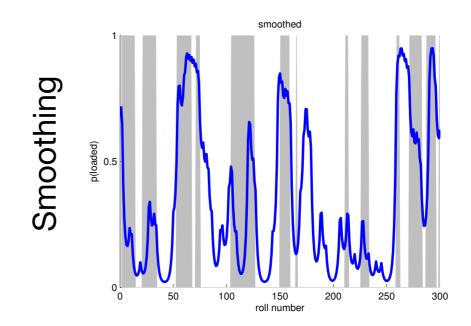
- Given an observation sequence $z_1, z_2, z_3...$
- Assume that the model parameters $\theta = (A, \pi, \phi)$ are known
- What is the probability that the given observation sequence is actually observed under this model,
 i.e. the data likelihood p(Z| θ)?
- If we are given several different models, we can choose the one with highest probability
- Expressed as a supervised learning problem, this can be interpreted as the inference step (classification step)

Application Example (2)

Based on the data likelihood we can solve two different kinds of problems:

- Filtering: computes $p(\mathbf{x}_n | \mathbf{z}_{1:n})$, i.e. state probability only based on previous observations
- Smoothing: computes p(x_n | z_{1:N}), state probability based on all observations (including those from the future)





Application Example (3)

- Given an observation sequence $z_1, z_2, z_3...$
- Assume that the model parameters $\theta = (A, \pi, \varphi)$ are known
- What is the state sequence x₁, x₂, x₃... that
 explains best the given observation sequence?
- In the case of place recognition: which is the sequence of truly visited places that explains best the sequence of obtained place labels (classifications)?

Application Example (4)

- Given an observation sequence $z_1, z_2, z_3...$
- What are the optimal model parameters $\theta = (A, \pi, \phi)$?
- This can be interpreted as the training step
- It is in general the most difficult problem

Summary: 4 Operations on HMMs

- **1.** Compute data likelihood $p(Z|\theta)$ from a known model
 - Can be computed with the forward algorithm
- 2. Filtering or Smoothing of the state probability
 - Filtering: forward algorithm
 - Smoothing: forward-backward algorithm
- 3. Compute optimal state sequence with a known model
 - Can be computed with the Viterbi-Algorithm
- 4. Learn model parameters for an observation sequence
 - Can be computed using Expectation-Maximization (or Baum-Welch)

Goal: compute $p(Z|\theta)$ (we drop θ in the following)

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_n) = \sum_{\mathbf{x}_n} p(\mathbf{z}_1,\ldots,\mathbf{z}_n,\mathbf{x}_n) =: \sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)$$

Goal: compute $p(Z|\theta)$ (we drop θ in the following)

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_n) = \sum_{\mathbf{x}_n} p(\mathbf{z}_1,\ldots,\mathbf{z}_n,\mathbf{x}_n) =: \sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)$$

We can calculate α recursively:

$$\alpha(\mathbf{x}_n) = p(\mathbf{z}_n \mid \mathbf{x}_n) \sum_{\mathbf{x}_{n-1}} \alpha(\mathbf{x}_{n-1}) p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$$

Goal: compute $p(Z|\theta)$ (we drop θ in the following)

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_n) = \sum_{\mathbf{x}_n} p(\mathbf{z}_1,\ldots,\mathbf{z}_n,\mathbf{x}_n) =: \sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)$$

We can calculate α recursively:

$$\alpha(\mathbf{x}_n) = p(\mathbf{z}_n \mid \mathbf{x}_n) \sum_{\mathbf{x}_{n-1}} \alpha(\mathbf{x}_{n-1}) p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$$

This is (almost) the same recursive formula as we had in the first lecture!

Goal: compute $p(Z|\theta)$ (we drop θ in the following)

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_n) = \sum_{\mathbf{x}_n} p(\mathbf{z}_1,\ldots,\mathbf{z}_n,\mathbf{x}_n) =: \sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)$$

We can calculate α recursively:

$$\alpha(\mathbf{x}_n) = p(\mathbf{z}_n \mid \mathbf{x}_n) \sum_{\mathbf{x}_{n-1}} \alpha(\mathbf{x}_{n-1}) p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$$

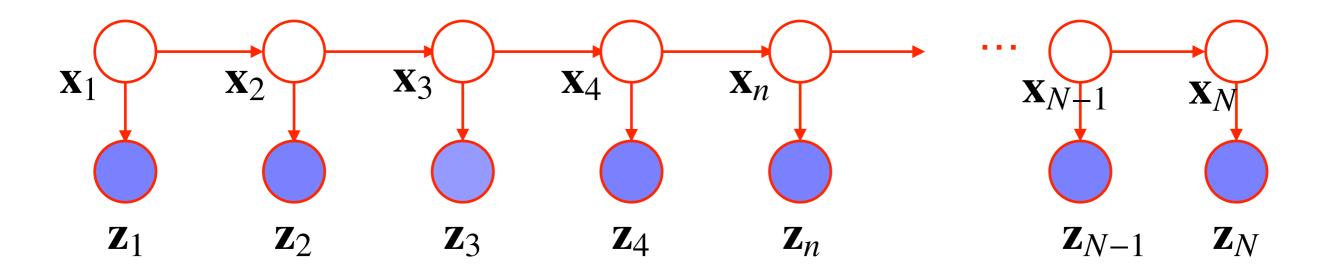
This is (almost) the same recursive formula as we had in the first lecture!

Filtering:
$$p(\mathbf{x}_n | \mathbf{z}_1, \dots, \mathbf{z}_n) = \frac{p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n)}{p(\mathbf{z}_1, \dots, \mathbf{z}_n)} = \frac{\alpha(\mathbf{x}_n)}{\sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)}$$

The Forward-Backward Algorithm

- As before we set $\alpha(\mathbf{x}_n) = p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n)$
- We also define $\beta(\mathbf{x}_n) = p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N \mid \mathbf{x}_n)$

e.g. *n* = 5:



The Forward-Backward Algorithm

- As before we set $\alpha(\mathbf{x}_n) = p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n)$
- We also define $\beta(\mathbf{x}_n) = p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N \mid \mathbf{x}_n)$
- This can be recursively computed (backwards):

$$\beta(\mathbf{x}_{n-1}) = p(\mathbf{z}_n, \dots, \mathbf{z}_N | \mathbf{x}_{n-1})$$

$$= \sum_{\mathbf{x}_n} p(\mathbf{x}_n, \mathbf{z}_n, \dots, \mathbf{z}_N | \mathbf{x}_{n-1})$$

$$= \sum_{\mathbf{x}_n} p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N | \mathbf{x}_n, \mathbf{z}_n, \mathbf{x}_{n-1}) p(\mathbf{x}_n, \mathbf{z}_n | \mathbf{x}_{n-1})$$

$$= \sum_{\mathbf{x}_n} p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N | \mathbf{x}_n) p(\mathbf{z}_n | \mathbf{z}_{n-1}, \mathbf{x}_n) p(\mathbf{x}_n | \mathbf{x}_{n-1})$$

$$= \sum_{\mathbf{x}_n} \beta(\mathbf{x}_n) p(\mathbf{z}_n | \mathbf{x}_n) p(\mathbf{x}_n | \mathbf{x}_{n-1})$$

The Forward-Backward Algorithm

- As before we set $\alpha(\mathbf{x}_n) = p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n)$
- We also define $\beta(\mathbf{x}_n) = p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N \mid \mathbf{x}_n)$
- This can be recursively computed (backwards):

$$\beta(\mathbf{x}_n) = \sum_{\mathbf{x}_{n+1}} \beta(\mathbf{x}_{n+1}) p(\mathbf{z}_{n+1} \mid \mathbf{x}_{n+1}) p(\mathbf{x}_{n+1} \mid \mathbf{x}_n)$$

- This is also known as the message-passing algorithm ("sum-product")!
 - forward messages α_n (vector of length *K*)
 - backward messages β_n (vector of length *K*)

Smoothing with Forward-Backward

First we compute $p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N)$:

 $p(\mathbf{x}_n, \mathbf{z}_1, \ldots, \mathbf{z}_N) = p(\mathbf{z}_1, \ldots, \mathbf{z}_N \mid \mathbf{x}_n) p(\mathbf{x}_n)$

$$= p(\mathbf{z}_1, \dots, \mathbf{z}_n | \mathbf{x}_n) p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N | \mathbf{x}_n) p(\mathbf{x}_n)$$
$$= p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n) p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N | \mathbf{x}_n)$$
$$= \alpha(\mathbf{x}_n) \beta(\mathbf{x}_n)$$

Smoothing with Forward-Backward

First we compute $p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N)$:

 $p(\mathbf{x}_n, \mathbf{z}_1, \ldots, \mathbf{z}_N) = \alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)$

with that we can compute $p(\mathbf{z}_1, \ldots, \mathbf{z}_N)$:

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_N) = \sum_{\mathbf{x}_n} p(\mathbf{x}_n,\mathbf{z}_1,\ldots,\mathbf{z}_N) = \sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)$$

Smoothing with Forward-Backward

First we compute $p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N)$:

 $p(\mathbf{x}_n, \mathbf{z}_1, \ldots, \mathbf{z}_N) = \alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)$

with that we can compute $p(\mathbf{z}_1, \ldots, \mathbf{z}_N)$:

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_N) = \sum_{\mathbf{x}_n} p(\mathbf{x}_n,\mathbf{z}_1,\ldots,\mathbf{z}_N) = \sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)$$

and finally:

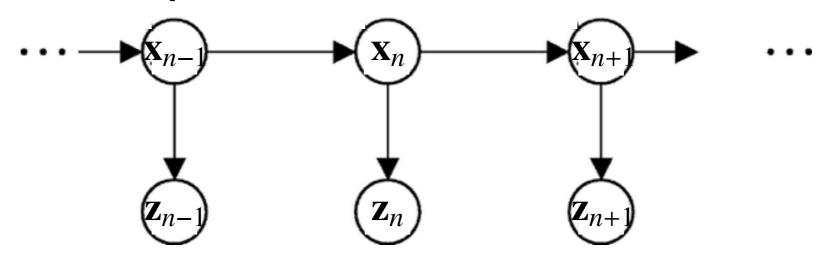
$$p(\mathbf{x}_n \mid \mathbf{z}_1, \dots, \mathbf{z}_N) = \frac{p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N)}{p(\mathbf{z}_1, \dots, \mathbf{z}_N)} = \frac{\alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)}{\sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)}$$

2. Computing the Most Likely States

• Goal: find a state sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots$ that maximizes the probability $p(X, Z | \theta)$

• Define
$$\delta(\mathbf{x}_n) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_n \mid \mathbf{z}_1, \dots, \mathbf{z}_n)$$

This is the probability of state *j* by taking the most probable path.



2. Computing the Most Likely States

• Goal: find a state sequence $x_1, x_2, x_3...$ that maximizes the probability $p(X,Z|\theta)$

• Define
$$\delta(\mathbf{x}_n) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_n \mid \mathbf{z}_1, \dots, \mathbf{z}_n)$$

This can be computed recursively: $\delta(\mathbf{x}_n) = \max_{\mathbf{x}_{n-1}} \delta(\mathbf{x}_{n-1}) p(\mathbf{x}_n | \mathbf{x}_{n-1}) p(\mathbf{z}_n, | \mathbf{x}_n)$

we also have to compute the argmax:

$$\psi(\mathbf{x}_n) = \arg \max_{\mathbf{x}_{n-1}} \delta(\mathbf{x}_{n-1}) p(\mathbf{x}_n \mid \mathbf{x}_{n-1}) p(\mathbf{z}_n, \mid \mathbf{x}_n)$$

The Viterbi algorithm

- Initialize:
 - $\delta(\mathbf{x}_0) = p(\mathbf{x}_0) p(\mathbf{z}_0 | \mathbf{x}_0)$
 - $\psi(\mathbf{x}_0) = 0$
- Compute recursively for *n*=1...*N*:
 - $\delta(\mathbf{x}_n) = p(\mathbf{z}_n | \mathbf{x}_n) \max_{\mathbf{x}_{n-1}} [\delta(\mathbf{x}_{n-1}) p(\mathbf{x}_n | \mathbf{x}_{n-1})]$
 - $\psi(\mathbf{x}_n) = \underset{x_{n-1}}{\operatorname{argmax}} \left[\delta(\mathbf{x}_{n-1}) p(\mathbf{x}_n | \mathbf{x}_{n-1}) \right]$
- On termination:
 - $p(Z,X|\theta) = \max_{x_N} \delta(x_N)$ • $x_N^* = \operatorname*{argmax}_{x_N} \delta(x_N)$
- Backtracking:

•
$$\mathbf{x}_n^* = \psi(\mathbf{x}_{n+1})$$

3. Learning the Model Parameters

- Given an observation sequence $z_1, z_2, z_3...$
- Find optimal model parameters $\theta = \pi, A, \varphi$
- We need to maximize the likelihood $p(Z|\theta)$
- Can not be solved in closed form
- Iterative algorithm "Baum-Welch": a special case of the Expectation Maximization (EM) algorithm

3. Learning the Model Parameters

Idea: instead of maximizing

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_N \mid \theta) = \sum_X p(\mathbf{z}_1,\ldots,\mathbf{z}_N,\mathbf{x}_1,\ldots,\mathbf{x}_N \mid \theta)$$

• we maximize the expected log likelihood:

$$\sum_{X} p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \mathbf{z}_1, \dots, \mathbf{z}_N, \theta) \log p(\mathbf{z}_1, \dots, \mathbf{z}_N, \mathbf{x}_1, \dots, \mathbf{x}_N \mid \theta)$$

- it can be shown that this is a lower bound of the actual log-likelihood $p(Z|\theta)$
- this is the general idea of the Expectation-Maximization (EM) algorithm

- E-Step (assuming we know π, A, φ , i.e. θ^{old})
- Define the posterior probability of being in state i at step k:
- Define $\gamma(\mathbf{x}_n) = p(\mathbf{x}_n | Z)$

- E-Step (assuming we know π, A, φ , i.e. θ^{old})
- Define the posterior probability of being in state i at step k:
- Define $\gamma(\mathbf{x}_n) = p(\mathbf{x}_n | \mathbf{z}_1, \dots, \mathbf{z}_N)$
- It follows that $\gamma(\mathbf{x}_n) = \alpha(\mathbf{x}_n) \beta(\mathbf{x}_n) / p(Z)$

- E-Step (assuming we know π, A, φ , i.e. θ^{old})
- Define the posterior probability of being in state i at step k:
- Define $\gamma(\mathbf{x}_n) = p(\mathbf{x}_n | \mathbf{z}_1, \dots, \mathbf{z}_n)$
- It follows that $\gamma(\mathbf{x}_n) = \alpha(\mathbf{x}_n) \beta(\mathbf{x}_n) / p(Z)$
- Define $\xi(\mathbf{x}_{n-1},\mathbf{x}_n) = p(\mathbf{x}_{n-1},\mathbf{x}_n|Z)$
- It follows that

$$\xi(\mathbf{x}_{n-1},\mathbf{x}_n) = \alpha(\mathbf{x}_{n-1})p(\mathbf{z}_n|\mathbf{x}_n)p(\mathbf{x}_n|\mathbf{x}_{n-1})\beta(\mathbf{x}_n) / p(\mathbf{Z})$$

- Note: $\gamma(\mathbf{x}_n)$ is a vector of length *K*; each entry $\gamma_k(\mathbf{x}_n)$ represents the probability that the state at time *n* is equal to $k \in \{1, ..., K\}$
- Thus: The **expected** number of transitions from state *k* in the sequence *X* is

$$\sum_{i=1}^N \gamma_k(\mathbf{x}_i)$$

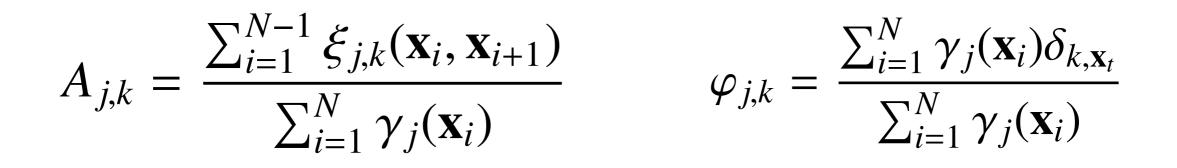
- Note: $\gamma(\mathbf{x}_n)$ is a vector of length *K*; each entry $\gamma_k(\mathbf{x}_n)$ represents the probability that the state at time *n* is equal to $k \in \{1, ..., K\}$
- Thus: The **expected** number of transitions from state k in the sequence X is $\sum_{i=1}^{N} \gamma_k(\mathbf{x}_i)$
- Similarly: The expected number of transitions from state *j* to state k in the sequence X is

$$\sum_{i=1}^{N-1} \xi_{j,k}(\mathbf{x}_i, \mathbf{x}_{i+1})$$

The Baum-Welsh algorithm

• With that we can compute new values for π, A, φ :

 $\pi_k = \gamma_k(\mathbf{x}_1)$



here, we need forward and backward step!

 This is done until the likelihood does not increase anymore (convergence)

The Baum-Welsh Algorithm - Summary

- Start with an initial estimate of $\theta = (\pi, A, \varphi)$ e.g. uniformly and k-means for φ
- Compute messages (E-Step)
- Compute new $\theta = (\pi, A, \varphi)$ (M-step)
- Iterate E and M until convergence
- In each iteration one full application of the forward-backward algorithm is performed
- Result gives a local optimum
- For other local optima, the algorithm needs to be started again with new initialization

Summary

- HMMs are a way to model sequential data
- They assume discrete states
- Three possible operations can be performed with HMMs:
 - Data likelihood, given a model and an observation
 - Most likely state sequence, given a model and an observation
 - Optimal Model parameters, given an observation
- Appropriate scaling solves numerical problems
- HMMs are widely used, e.g. in speech recognition

Computer Vision Group Prof. Daniel Cremers

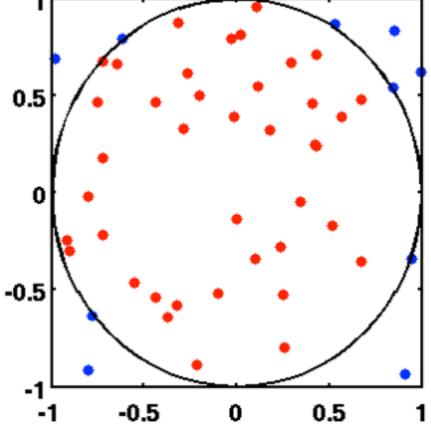
Technische Universität München

9. Sampling Methods

Sampling Methods

Sampling Methods are widely used in Computer Science

- as an approximation of a deterministic algorithm
- to represent uncertainty without a parametric model
- to obtain higher computational efficiency with a small approximation error
- Sampling Methods are also often called Monte Carlo Methods
- Example: Monte-Carlo Integration
 - Sample in the bounding box
 - Compute fraction of inliers
 - Multiply fraction with box size



Non-Parametric Representation

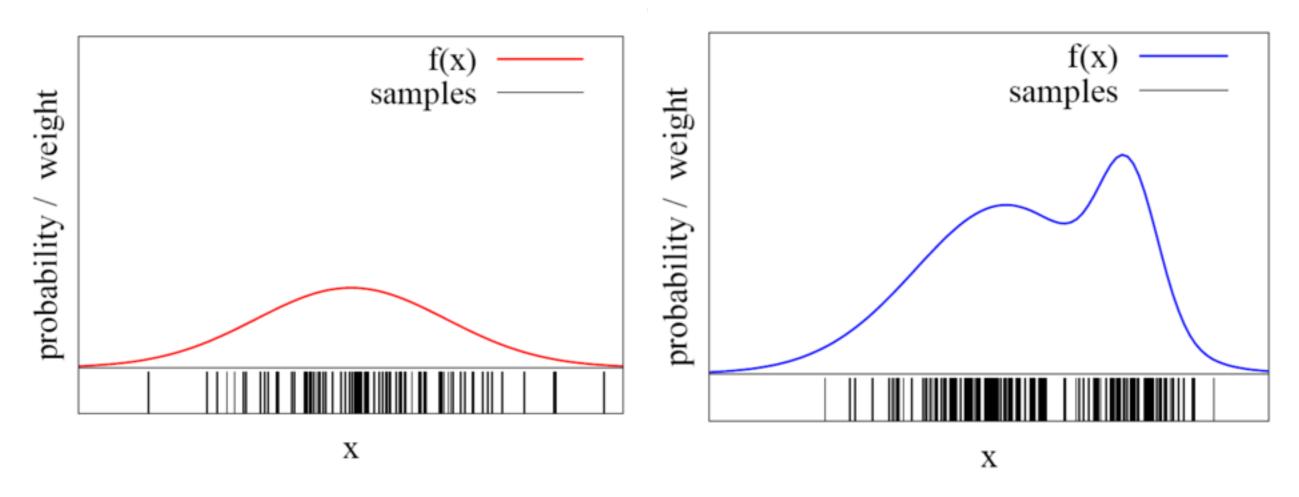
Probability distributions (e.g. a robot's belief) can be represeted:

- Parametrically: e.g. using mean and covariance of a Gaussian
- Non-parametrically: using a set of hypotheses (samples) drawn from the distribution

Advantage of non-parametric representation:

 No restriction on the type of distribution (e.g. can be multi-modal, non- Gaussian, etc.)

Non-Parametric Representation



The more samples are in an interval, the higher the probability of that interval

But:

How to draw samples from a function/distribution?

Sampling from a Distribution

There are several approaches:

- Probability transformation
 - Uses inverse of the c.d.f (not considered here)
- Rejection Sampling
- Importance Sampling
- Markov Chain Monte Carlo

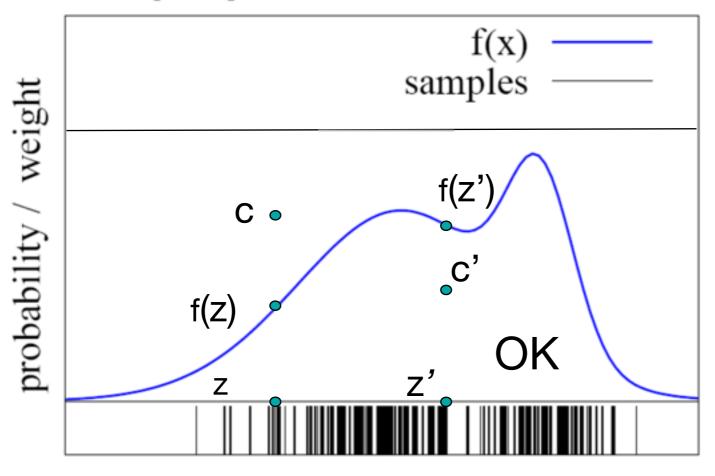
Rejection Sampling

1. Simplification:

- Assume p(z) < 1 for all z
- Sample z uniformly
- Sample c from [0,1]

• If f(z) > c : keep the sample otherwise:

reject the sample



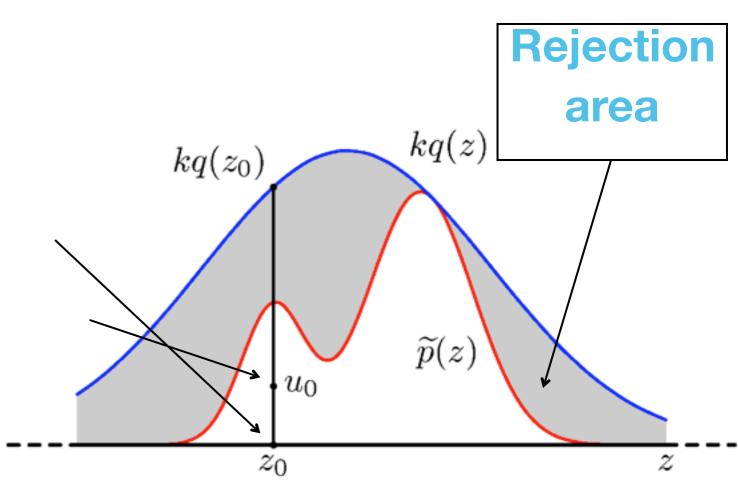
45

Rejection Sampling

2. General case:

Assume we can evaluate $p(z) = \frac{1}{Z_n} \tilde{p}(z)$ (unnormalized)

- Find proposal distribution q
 - Easy to sample from q
- Find k with $kq(z) \ge \tilde{p}(z)$
- Sample from q
- Sample uniformly from [0,kq(z₀)]
- Reject if $u_0 > \tilde{p}(z_0)$



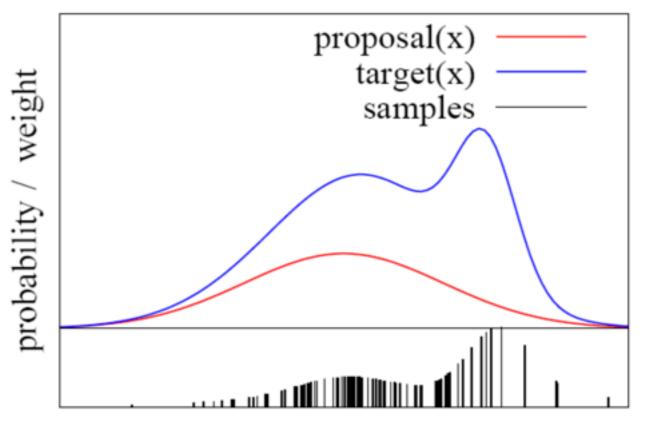
But: Rejection sampling is inefficient.

Importance Sampling

- Idea: assign an importance weight w to each sample
- With the importance weights, we can account for the "differences between p and q "

w(x) = p(x)/q(x)

- p is called target
- q is called proposal (as before)



Importance Sampling

- Explanation: The prob. of falling in an interval A is the area under p
- This is equal to the expectation of the indicator function $I(x \in A)$

$$E_p[I(z \in A)] = \int p(z)I(z \in A)dz$$

Importance Sampling

- Explanation: The prob. of falling in an interval A is the area under p
- This is equal to the expectation of the indicator function $I(x \in A)$

$$E_p[I(z \in A)] = \int p(z)I(z \in A)dz$$

$$\sum_{A} p(z)$$

 $= \int \frac{p(z)}{q(z)} q(z) I(z \in A) dz = E_q[w(z)I(z \in A)]$ Requirement: $p(x) > 0 \Rightarrow q(x) > 0$

Approximation with samples drawn from q: $E_q[w(z)I(z \in A)] \approx \frac{1}{L} \sum_{l=1}^{L} w(z_l)I(z_l \in A)$

