

Computer Vision Group Prof. Daniel Cremers

Technische Universität München

# Machine Learning for Computer Vision

PD Dr. Rudolph Triebel

### Lecturers



#### PD Dr. Rudolph Triebel

- rudolph.triebel@in.tum.de
- Room number 02.09.058 (Fridays)
- Main lecture
- MSc. Ioannis "John" Chiotellis
- ioannis.chiotellis@in.tum.de
- Room number 02.09.058
- Assistance and exercises
- MSc. Maximilian Denninger
- maximilian.denninger@dlr.de
- Assistance and exercises





### Lecturers



### • PD Dr. Rudolph Triebel

- rudolph.triebel@in.tum.de
- Room number 02.09.058 (Fridays)
- Main lecture

Main affiliation (Mo - Thur): Head of department for Perception and Cognition Institute of Robotics and Mechatronics, DLR <u>rudolph.triebel@dlr.de</u>





### **Class Webpage**

### https://vision.in.tum.de/teaching/ws2017/ml4cv

- Contains the slides and assignments for download
- Also used for communication, in addition to email list
- Some further material will be developed in class
- Material from earlier semesters also available
- Video lectures from an earlier semester on YouTube



# Aim of this Class

- Give a major overview of the most important machine learning methods
- Present relations to current research applications for most learning methods
- Explain some of the more basic techniques in more detail, others in less detail
- Provide a complement to other machine learning classes



## Prerequisites

### Main background needed:

- Linear Algebra
- Calculus
- Probability Theory

There is a "Linear Algebra Refresher" on the web page!

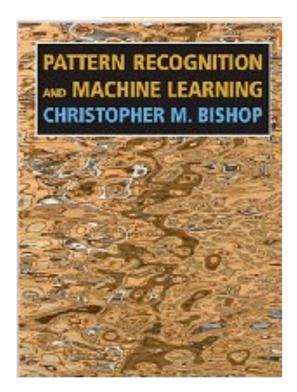


## **Topics Covered**

- Introduction (today)
- Regression
- Graphical Models (directed and undirected)
- Clustering
- Boosting and Bagging
- Metric Learning
- Convolutional Neural Networks and Deep Learning
- Kernel Methods
- Gaussian Processes
- Learning of Sequential Data
- Sampling Methods
- Variational Inference
- Online Learning





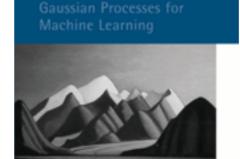


### Literature

Recommended textbook for the lecture: Christopher M. Bishop: "Pattern Recognition and Machine Learning"

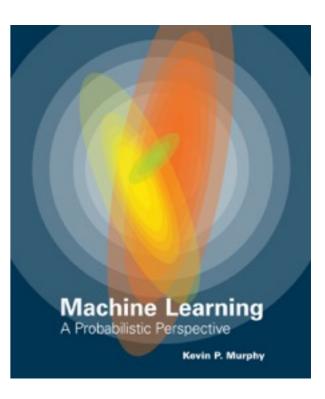
### More detailed:

 "Gaussian Processes for Machine Learning" Rasmussen/Williams



Carl Edward Rasmussen and Christopher K. I. Williams

 "Machine Learning - A Probabilistic Perspective" Murphy







### The Tutorials

- Weekly tutorial classes
- Lecturers are alternating (John and Max)
- Participation in tutorial classes and submission of solved assignment sheets is free
- In class, you have the opportunity to present your solution
- Assignments will be theoretical and practical problems (in Python)
- Software library: <u>https://github.com/johny-c/mlcv-tutorial</u>
- First tutorial class: Oct. 23



### The Exam

- No "qualification" necessary for the final exam
- It will be a **written** exam
- So far, the date is not fixed yet, it will be announced within the next weeks
- In the exam, there will be more assignments than needed to reach the highest grade





Computer Vision Group Prof. Daniel Cremers

Technische Universität München

ПП

# Why Machine Learning?

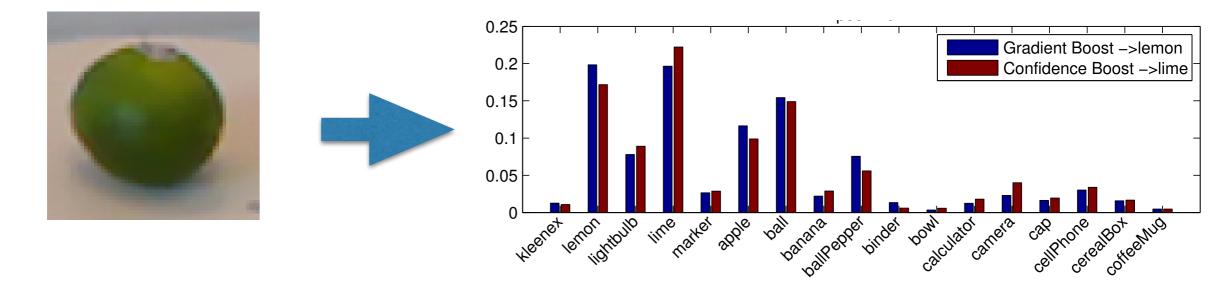
# **Typical Problems in Computer Vision**

#### Image Segmentation





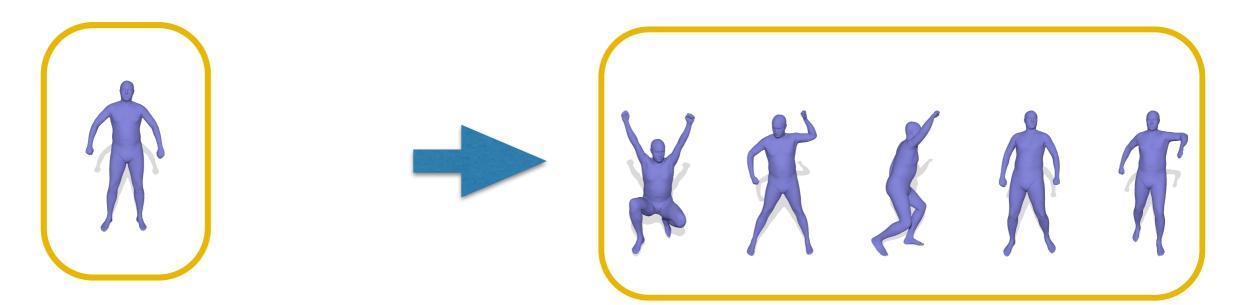
#### **Object Classification**



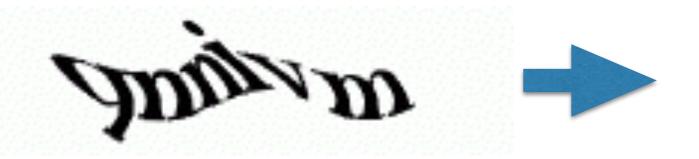


# **Typical Problems in Computer Vision**

3D Shape Analysis, e.g. Shape Retrieval



**Optical Character Recognition** 





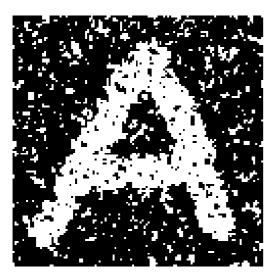


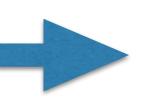
# **Typical Problems in Computer Vision**

#### Image compression



#### Noise reduction









... and many others, e.g.: optical flow, scene flow, 3D reconstruction, stereo matching, ...



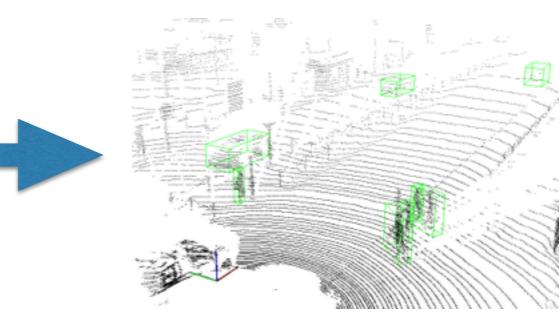
Machine Learning for Computer Vision



# **Some Applications in Robotics**

#### Detection of cars and pedestrians for autonomous cars





#### Semantic Mapping









# What Makes These Problems Hard?

- It is very hard to express the relation from input to output with a mathematical model.
- Even if there was such a model, how should the parameters be set?
- A hand-crafted model is not general enough, it can not be used again in similar applications
- There is often no one-to-one mapping from input to output

**Idea:** extract the needed information from a data set of input - output pairs by optimizing an objective function



## **Example Application of Learning in Robotics**

- Most objects in the environment can be classified, e.g. with respect to their size, functionality, dynamic properties, etc.
- Robots need to *interact* with the objects (move around, manipulate, inspect, etc.) and with humans
- For all these tasks it is necessary that the robot knows to which class an object belongs

Which object is a door?



## Learning = Optimization

- A natural way to do object classification is to first find a mapping from input data to object labels ("learning") and then infer from the learned data a possible class for a new object.
- The area of machine learning deals with the formulation and investigates methods to do the learning automatically.
- It is essentially based on **optimization** methods
- Machine learning algorithms are widely used in robotics and computer vision





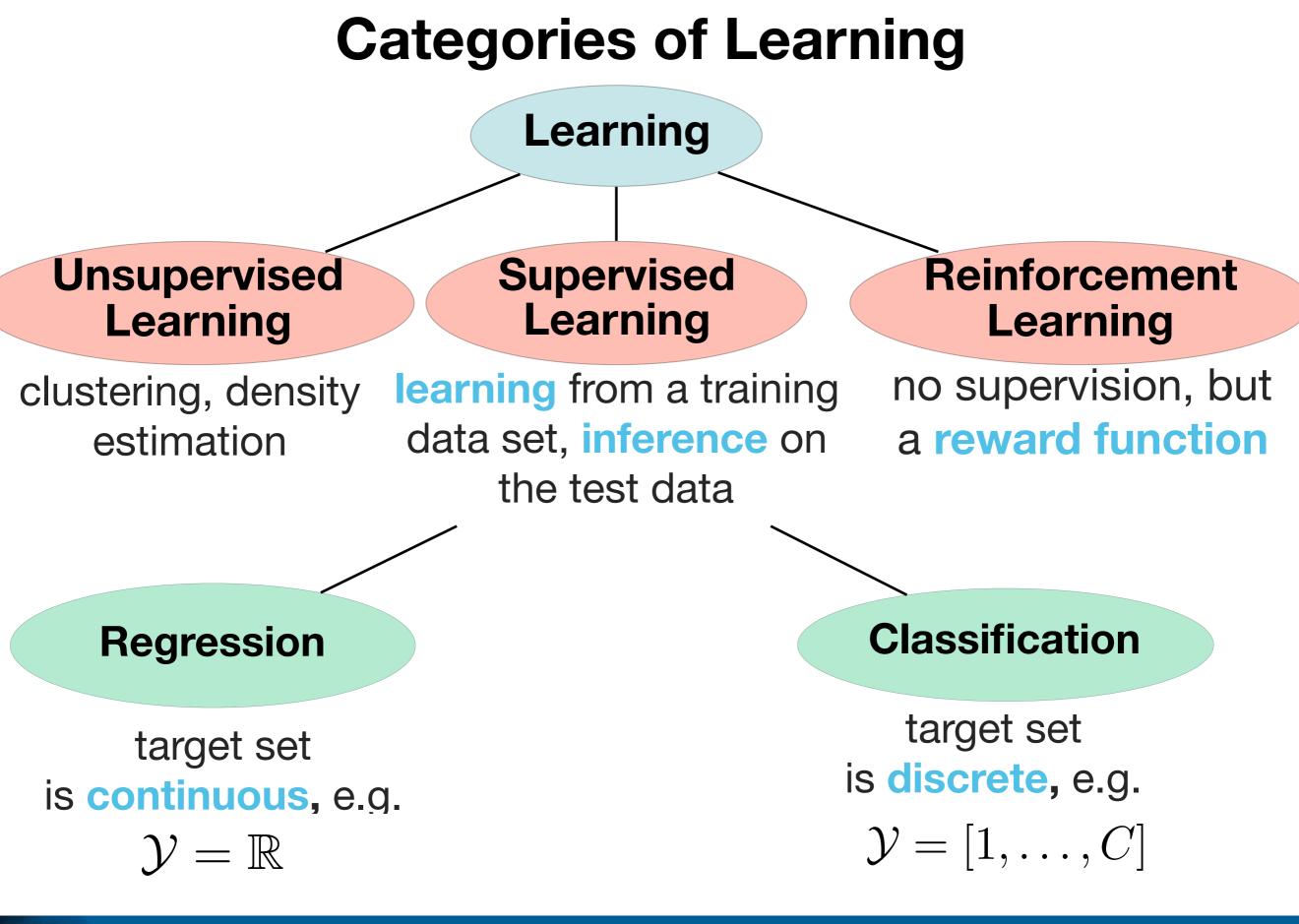
### **Mathematical Formulation**

Suppose we are given a set  $\mathcal{X}$  of objects and a set  $\mathcal{Y}$  of object categories (classes). In the learning task we search for a mapping  $\varphi : \mathcal{X} \to \mathcal{Y}$  such that similar elements in  $\mathcal{X}$  are mapped to similar elements in  $\mathcal{Y}$ . **Examples:** 

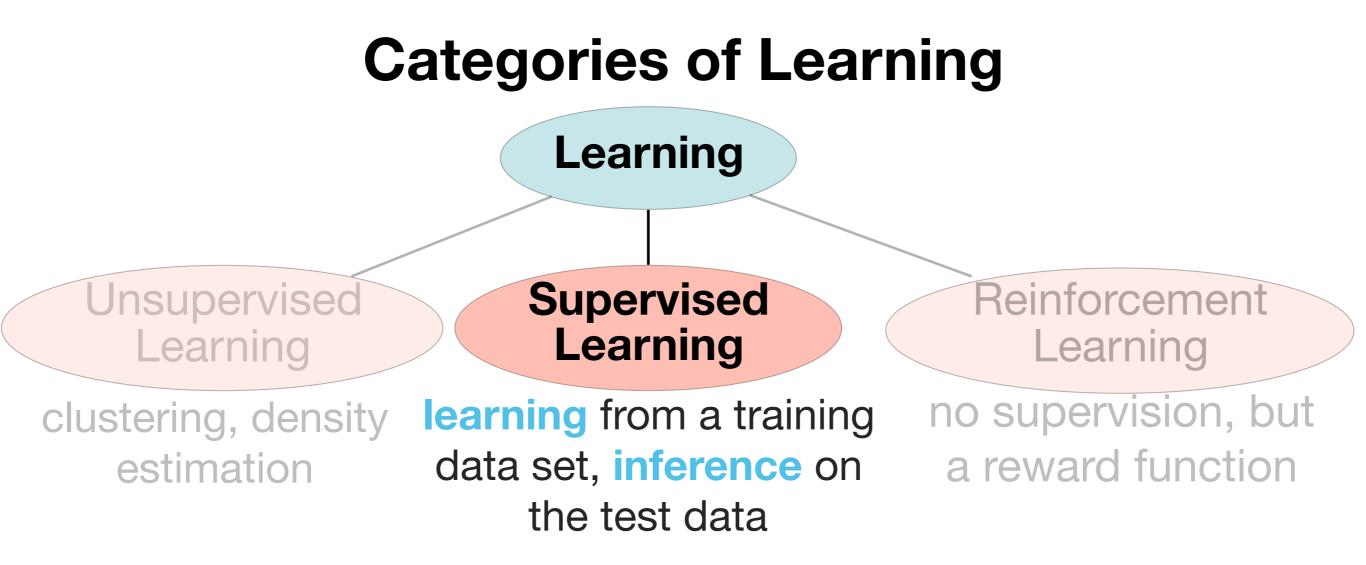
- Object classification: chairs, tables, etc.
- Optical character recognition
- Speech recognition

Important problem: Measure of similarity!







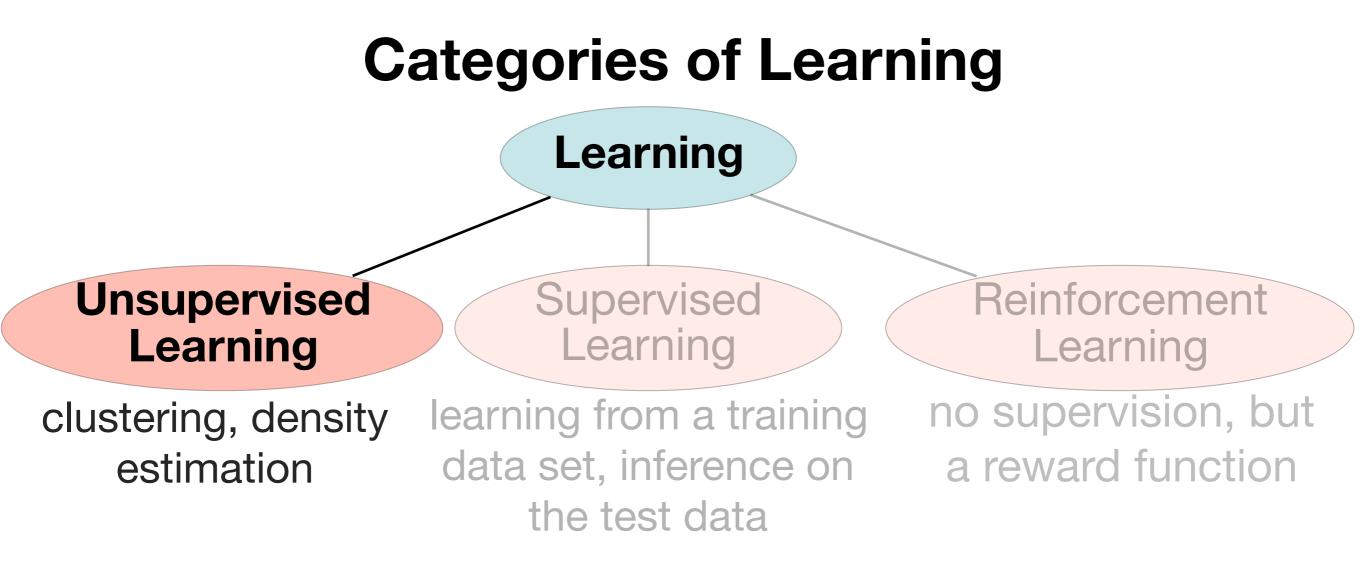


Supervised Learning is the main topic of this lecture! Methods used in Computer Vision include:

- Regression
- Conditional Random Fields
- Boosting

- Deep Neural Networks
- Gaussian Processes
- Hidden Markov Models



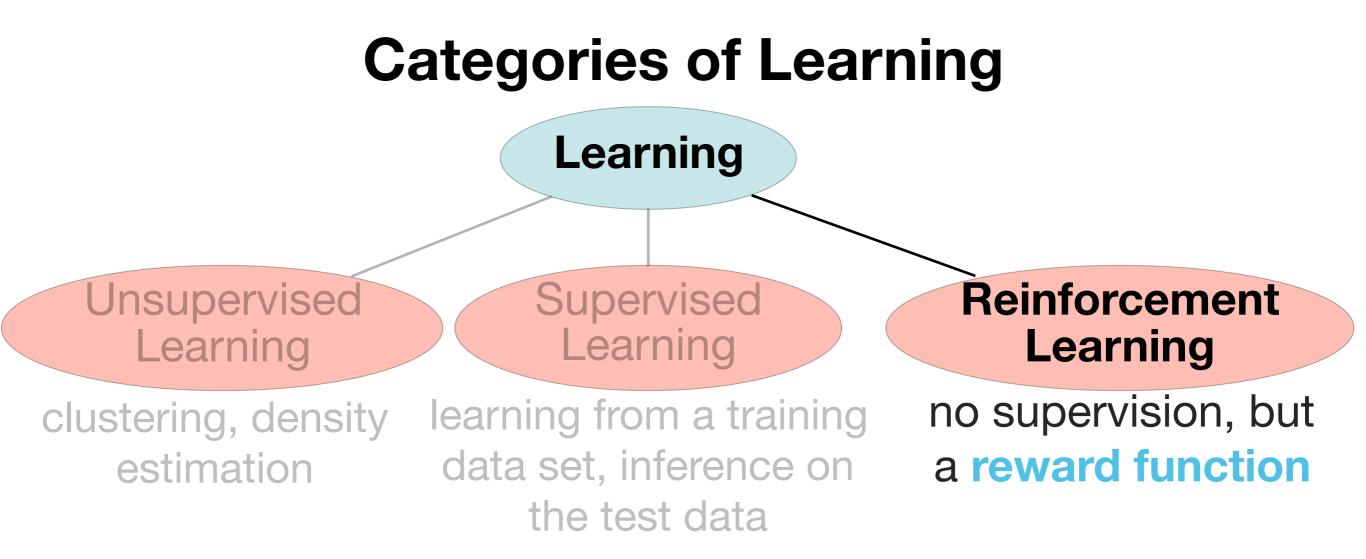


In unsupervised learning, there is no ground truth information given.

Most Unsupervised Learning methods are based on **Clustering**.







### Reinforcement Learning requires an action

- the reward defines the quality of an action
- mostly used in robotics (e.g. manipulation)
- can be dangerous, actions need to be "tried out"
- not handled in this course



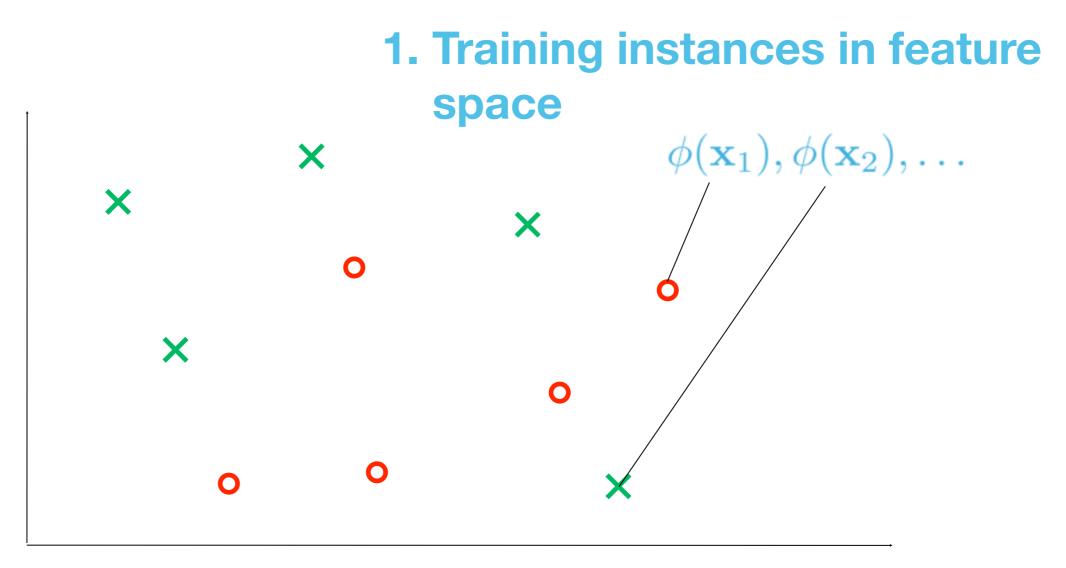
## **Categories of Learning**

Further distinctions are:

- online vs offline learning (both for supervised and unsupervised methods)
- semi-supervised learning (a combination of supervised and unsupervised learning)
- multiple instance / single instance learning
- multi-task / single-task learning

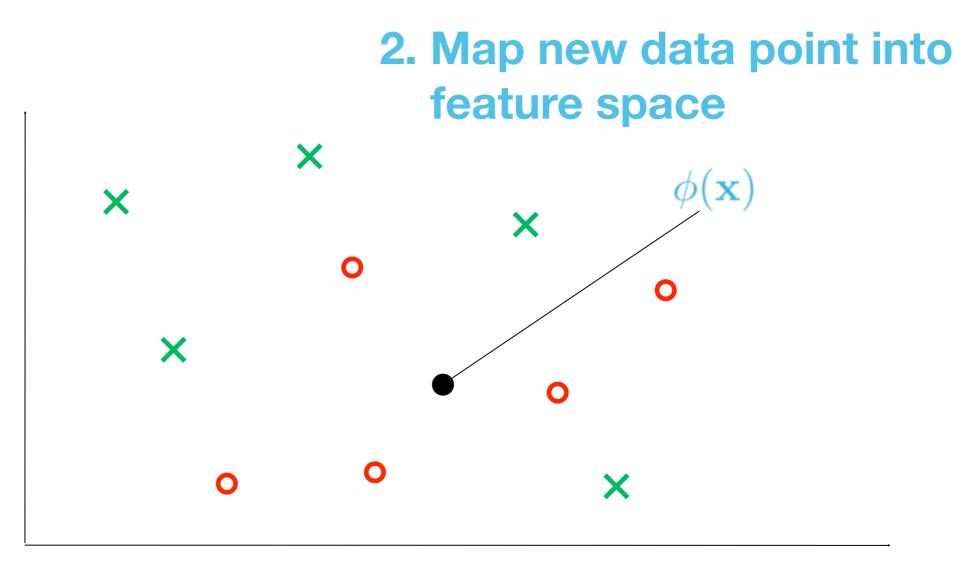


- Given: data points  $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots$
- Rule: Each new data point is assigned to the class of its nearest neighbor in feature space



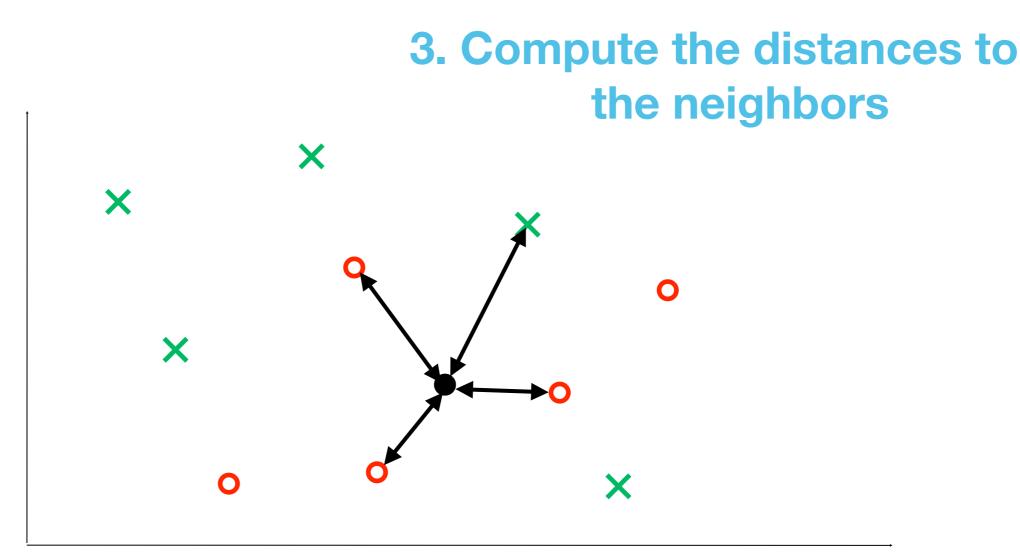


- Given: data points  $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots$
- Rule: Each new data point is assigned to the class of its nearest neighbor in feature space



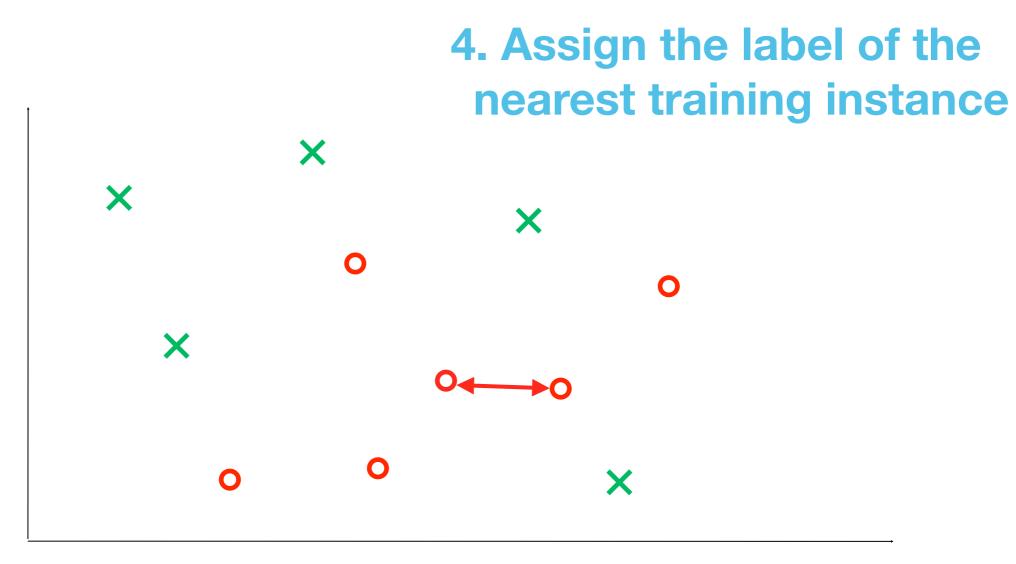


- Given: data points  $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots$
- Rule: Each new data point is assigned to the class of its nearest neighbor in feature space



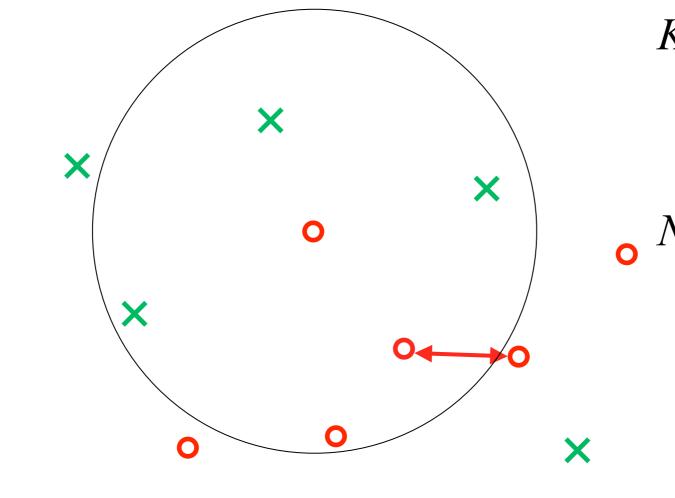


- Given: data points  $(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), \dots$
- Rule: Each new data point is assigned to the class of its nearest neighbor in feature space





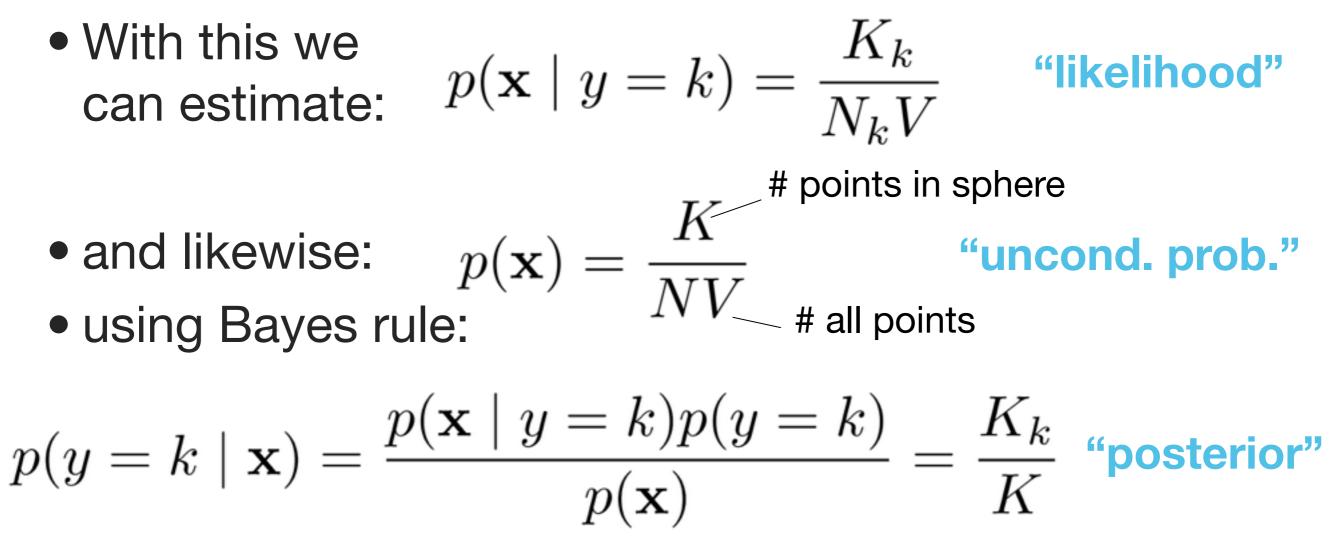
- General case: *K* nearest neighbors
- We consider a sphere around each training instance that has a fixed volume *V*.



- *K<sub>k</sub>*: Number of points from class *k* inside sphere
- $N_k$ : Number of all points from class k



- General case: *K* nearest neighbors
- We consider a sphere around a training / test sample that has a fixed volume *V*.





Nearest-neighbor classification:

• General case: *K* nearest neighbors

$$p(y = k \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid y = k)p(y = k)}{p(\mathbf{x})} = \frac{K_k}{K}$$

To classify the new data point x we compute the posterior for each class k = 1,2,... and assign the label that maximizes the posterior (MAP).

$$t := \arg\max_{k} p(y = k \mid \mathbf{x})$$



## Summary

- Learning is usually a two-step process consisting in a training and an inference step
- Learning is useful to extract semantic information, e.g. about the objects in an environment
- There are three main categories of learning: *unsupervised*, *supervised* and *reinforcement* learning
- Supervised learning can be split into regression, and classification
- An example for a generative model is *nearest neighbor* classification





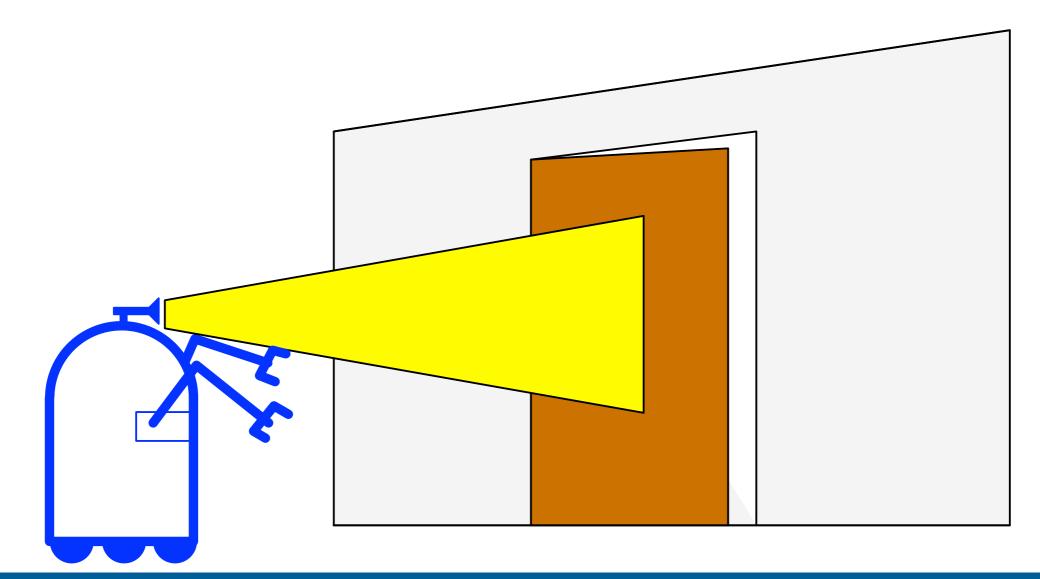
Computer Vision Group Prof. Daniel Cremers

Technische Universität München

# Introduction to Probabilistic Reasoning

### Motivation

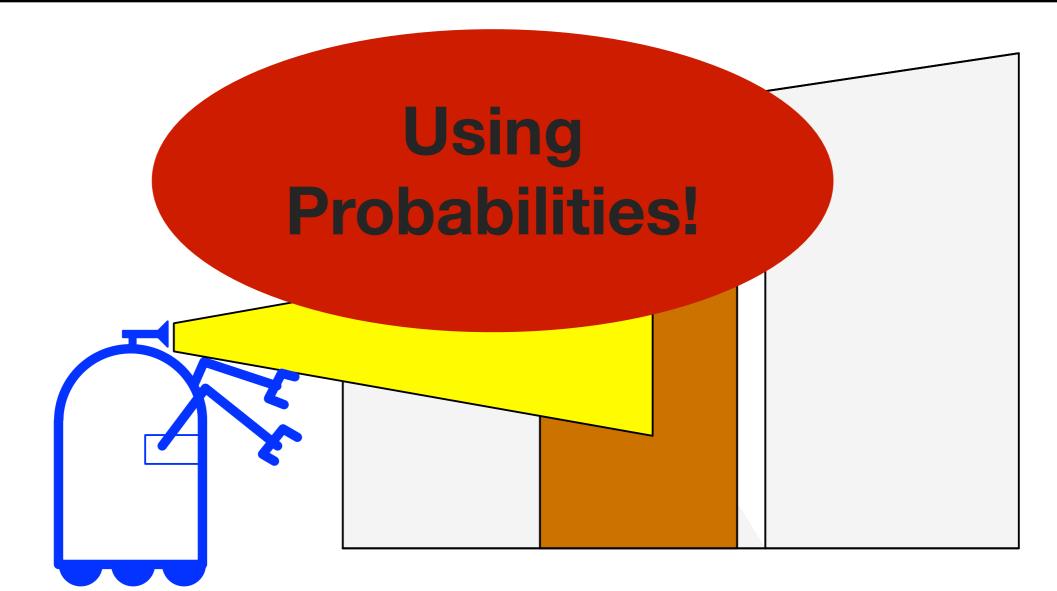
Suppose a robot stops in front of a door. It has a sensor (e.g. a camera) to measure the state of the door (open or closed). **Problem**: the sensor may fail.





### Motivation

Question: How can we obtain knowledge about the environment from sensors that may return incorrect results?



Machine Learning for Computer Vision



### **Basics of Probability Theory**

**Definition 1.1**: A sample space S is a set of outcomes of a given experiment.

Examples:

- a) Coin toss experiment:
- b) Distance measurement:

$$\mathcal{S} = \{H, T\}$$
$$\mathcal{S} = \mathbb{R}_0^+$$

**Definition 1.2:** A *random variable* X is a function that assigns a real number to each element of S.

**Example:** Coin toss experiment: H = 1, T = 0Values of random variables are denoted with small letters, e.g.: X = x





### **Discrete and Continuous**

If  $\mathcal{S}$  is countable then X is a *discrete* random variable, else it is a *continuous* random variable.

The probability that X takes on a certain value x is a real number between 0 and 1. It holds:

$$\sum_{x} p(X = x) = 1 \qquad \qquad \int p(X = x) dx = 1$$
  
Discrete case Continuous case

0



## A Discrete Random Variable

Suppose a robot knows that it is in a room, but it does not know in *which* room. There are 4 possibilities:

#### Kitchen, Office, Bathroom, Living room

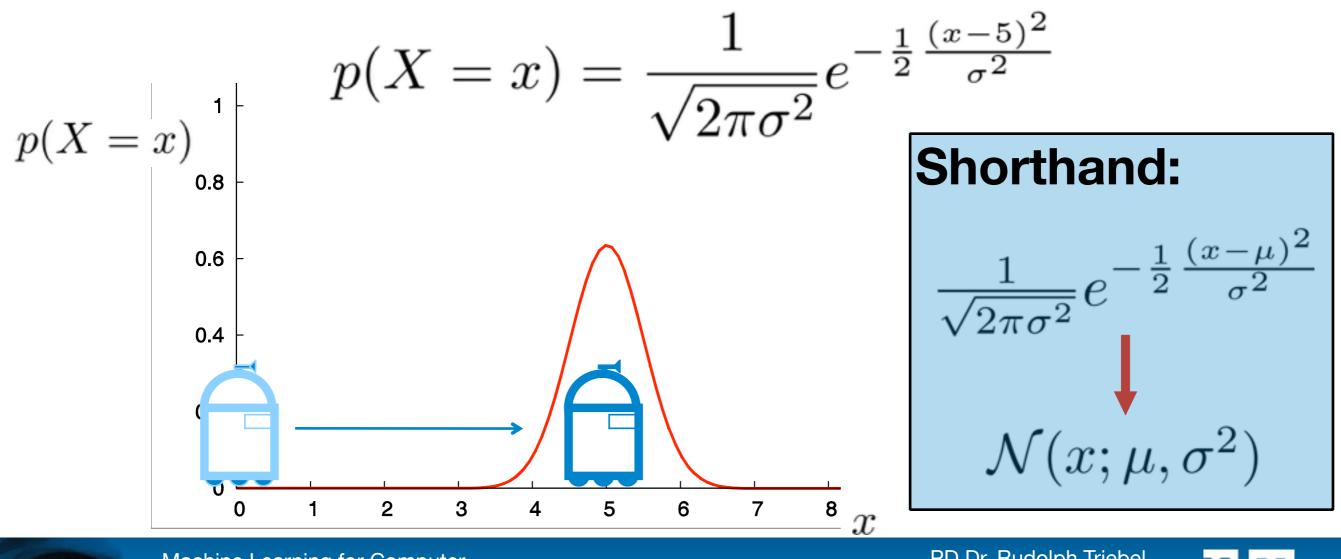
Then the random variable *Room* is discrete, because it can take on one of four values. The probabilities are, for example:

$$P(Room = \text{kitchen}) = 0.7$$
$$P(Room = \text{office}) = 0.2$$
$$P(Room = \text{bathroom}) = 0.08$$
$$P(Room = \text{living room}) = 0.02$$



## **A Continuous Random Variable**

Suppose a robot travels 5 meters forward from a given start point. Its position X is a continuous random variable with a *Normal distribution*:



Machine Learning for Computer Vision

PD Dr. Rudolph Triebel Computer Vision Group



## **Joint and Conditional Probability**

The *joint probability* of two random variables X and Y is the probability that the events X = x and Y = y occur at the same time:

$$p(X = x \text{ and } Y = y)$$

Shorthand: 
$$p(X = x) \longrightarrow p(x)$$
  
 $p(X = x \text{ and } Y = y) \longrightarrow p(x, y)$ 

**Definition 1.3:** The *conditional probability* of X given Y is defined as:

$$p(X = x \mid Y = y) = p(x \mid y) := \frac{p(x, y)}{p(y)}$$



# Independency, Sum and Product Rule

**Definition 1.4:** Two random variables X and Y are *independent* iff:

$$p(x,y) = p(x)p(y)$$

For independent random variables X nd Ye have:

$$p(x \mid y) = \frac{p(x, y)}{p(y)} = \frac{p(x)p(y)}{p(y)} = p(x)$$

Furthermore, it holds:

$$p(x) = \sum_{y} p(x, y) \qquad p(x, y) = p(y \mid x)p(x)$$
  
"Sum Rule" "Product Rule"



## Law of Total Probability

**Theorem 1.1:** For two random variables X and Y it holds:

$$p(x) = \sum_{y} p(x \mid y) p(y) \qquad p(x) = \int p(x \mid y) p(y) dy$$
  
Discrete case Continuous case

The process of obtaining p(x) from p(x, y) by summing or integrating over all values of y is called Marginalisation



n



### **Bayes Rule**

**Theorem 1.2:** For two random variables X and Y it holds:

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$
 "Bayes Rule"  
Proof:  
I.  $p(x \mid y) = \frac{p(x, y)}{p(y)}$  (definition)  
II.  $p(y \mid x) = \frac{p(x, y)}{p(x)}$  (definition)  
III.  $p(x, y) = p(y \mid x)p(x)$  (from II.)



### **Bayes Rule: Background Knowledge**

For  $p(y \mid z) \neq 0$  it holds:

Background knowledge

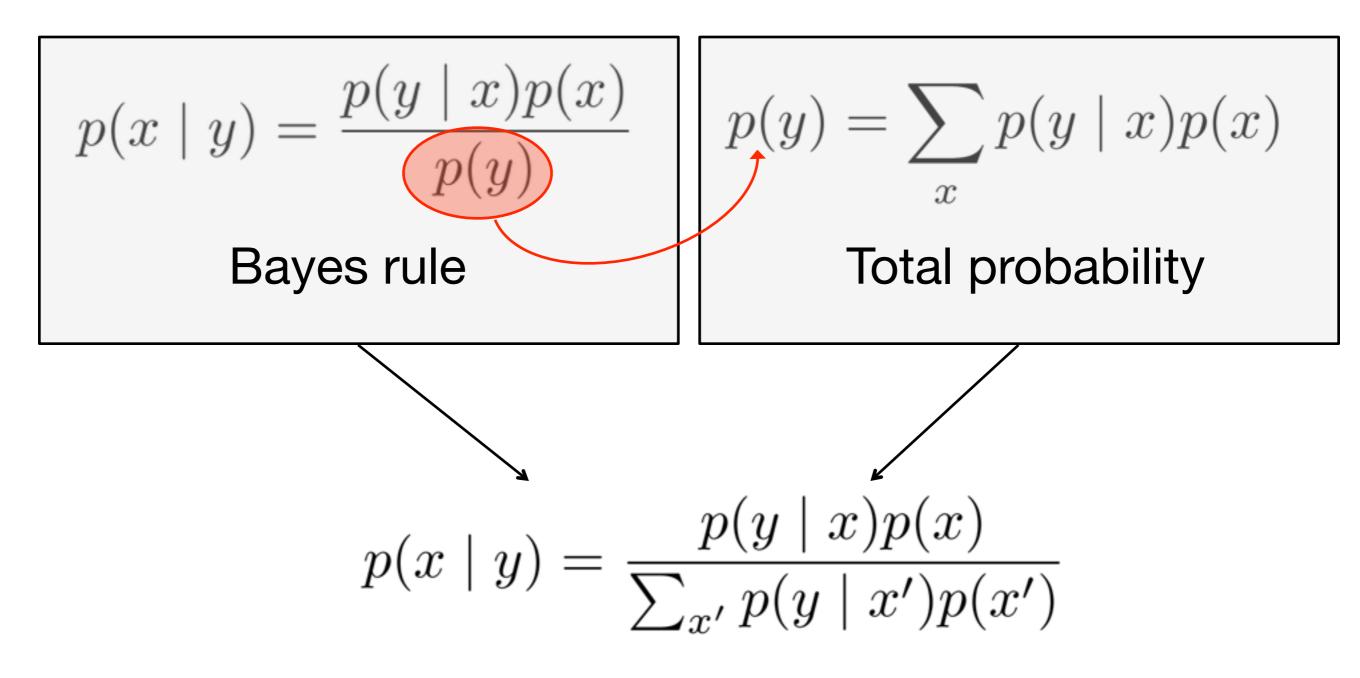
$$p(x \mid y, z) = \frac{p(y \mid x, z)p(x \mid z)}{p(y \mid z)}$$

Shorthand: 
$$p(y \mid z)^{-1} \longrightarrow \eta$$
  
"Normalizer"

$$p(x \mid y, z) = \eta \ p(y \mid x, z)p(x \mid z)$$



# **Computing the Normalizer**



 $p(x \mid y)$  can be computed without knowing p(y)

Machine Learning for Computer Vision



## **Conditional Independence**

**Definition 1.5:** Two random variables X and Y are conditional independent given a third random variable Z iff:

$$p(x, y \mid z) = p(x \mid z)p(y \mid z)$$

This is equivalent to:

$$p(x \mid z) = p(x \mid y, z) \text{ and}$$
$$p(y \mid z) = p(y \mid x, z)$$





### **Expectation and Covariance**

**Definition 1.6:** The *expectation* of a random variable X is defined as:

$$E[X] = \sum_{x} x \ p(x) \qquad \text{(discrete case)}$$
 
$$E[X] = \int x \ p(x) dx \qquad \text{(continuous case)}$$

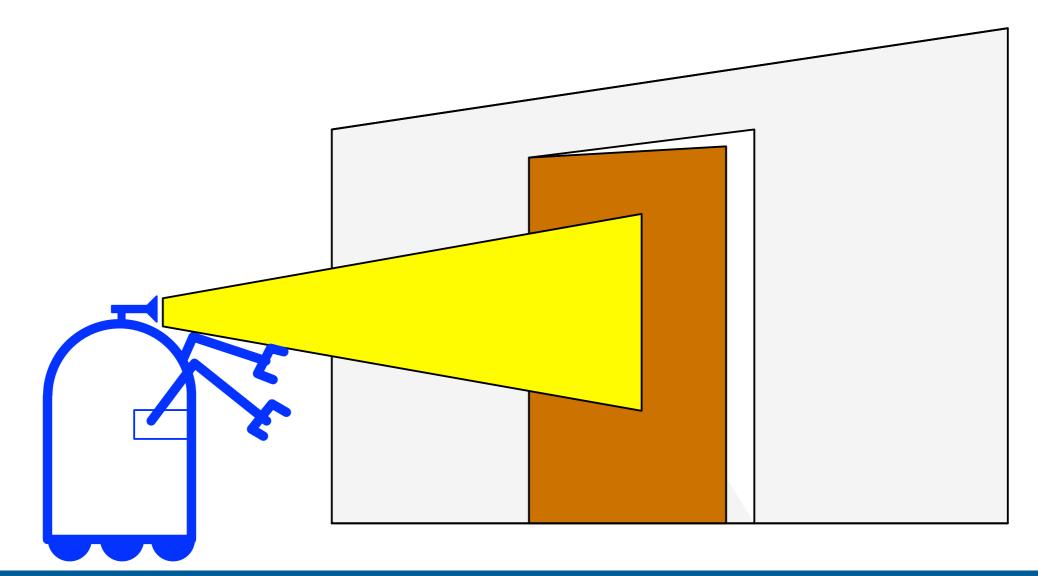
**Definition 1.7:** The *covariance* of a random variable X is defined as:

$$Cov[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$$



### **Mathematical Formulation of Our Example**

We define two binary random variables: z and open, where z is "light on" or "light off". Our question is: What is  $p(\text{open} \mid z)$ ?





# **Causal vs. Diagnostic Reasoning**

- Searching for  $p(\text{open} \mid z)$  is called *diagnostic* reasoning
- $\bullet$  Searching for  $p(z \mid \operatorname{open})$  is called causal reasoning
- Often causal knowledge is easier to obtain
- Bayes rule allows us to use causal knowledge:

$$p(\text{open} \mid z) = \frac{p(z \mid \text{open})p(\text{open})}{p(z)}$$
$$= \frac{p(z \mid \text{open})p(\text{open})}{p(z \mid \text{open})p(\text{open}) + p(z \mid \neg \text{open})p(\neg \text{open})}$$



### **Example with Numbers**

Assume we have this sensor model:

$$p(z \mid \text{open}) = 0.6 \qquad p(z \mid \neg \text{open}) = 0.3$$
  
and: 
$$p(\text{open}) = p(\neg \text{open}) = 0.5 \qquad \text{``Prior prob.''}$$
  
then:  
$$p(\text{open} \mid z) = \frac{p(z \mid \text{open})p(\text{open})}{p(z \mid \text{open})p(\text{open}) + p(z \mid \neg \text{open})p(\neg \text{open})}$$
  
$$0.6 \cdot 0.5 \qquad 2 \qquad 0.67$$

$$\frac{0.0 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67$$

#### "z raises the probability that the door is open"





# **Combining Evidence**

Suppose our robot obtains another observation  $z_2$ , where the index is the point in time.

**Question**: How can we integrate this new information?

Formally, we want to estimate  $p(\text{open} \mid z_1, z_2)$ . Using Bayes formula with background knowledge:

$$p(\text{open} \mid z_1, z_2) = \frac{p(z_2 \mid \text{open}, z_1)p(\text{open} \mid z_1)}{p(z_2 \mid z_1)}$$



## **Markov Assumption**

"If we know the state of the door at time t = 1then the measurement  $z_1$  does not give any further information about  $z_2$ ."

Formally: " $z_1$  and  $z_2$  are conditional independent given open." This means:

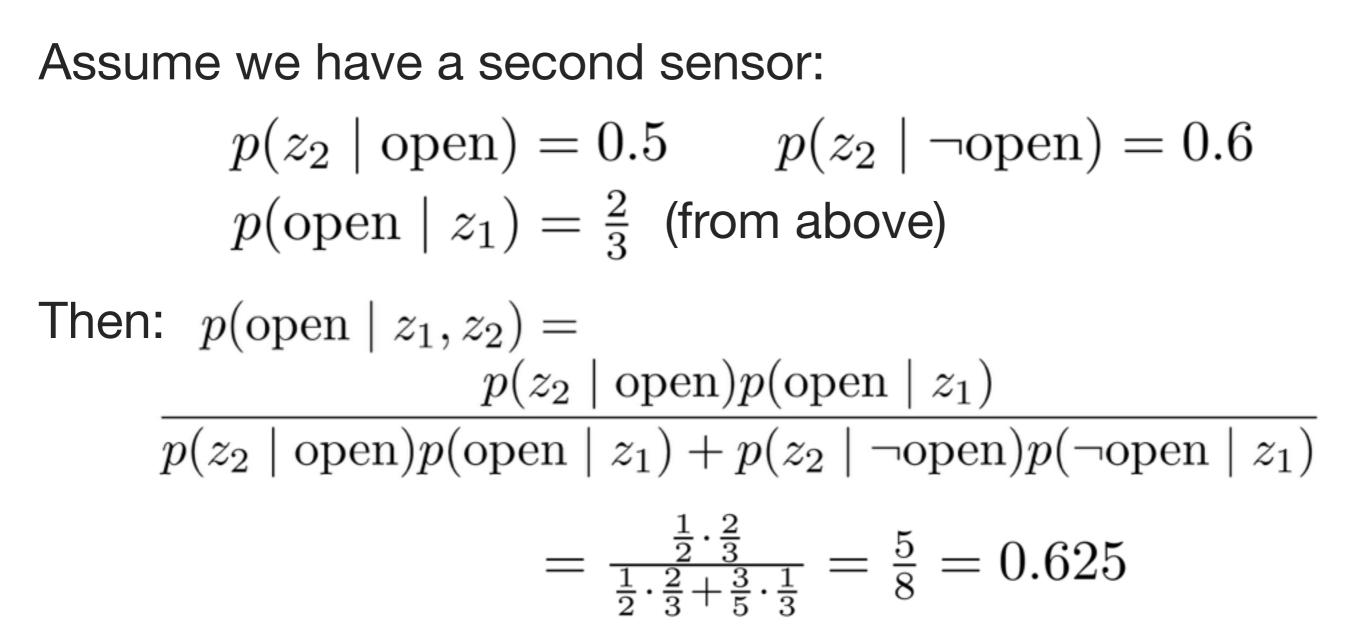
$$p(z_2 \mid \text{open}, z_1) = p(z_2 \mid \text{open})$$

This is called the *Markov Assumption*.





### **Example with Numbers**



#### " $z_2$ lowers the probability that the door is open"





#### **General Form**

Measurements:  $z_1, \ldots, z_n$ 

Markov assumption:  $z_n$  and  $z_1, \ldots, z_{n-1}$  are conditionally independent given the state x.

