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Example: Sensing and Acting 

Now the robot senses the door state and acts  
(it opens or closes the door).
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If the door is open, the action “close door” succeeds 
in 90% of all cases.

State Transitions 

The outcome of an action is modeled as a 

random variable      where            in our case   

means “state after closing the door”. 
State transition example:

2



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for Computer 
Vision

If the state space is continuous:

If the state space is discrete:

For a given action    we want to know the 
probability             . We do this by integrating over 
all possible previous states    .
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The Outcome of Actions
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Back to the Example 
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Definition 2.1: Let                                        be a 
sequence of sensor measurements and actions 
until time  . Then the belief of the current state      
is defined as 

Sensor Update and Action Update

So far, we learned two different ways to update the 
system state: 

• Sensor update: 

• Action update: 

• Now we want to combine both:
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This incorporates the following  
Markov assumptions:

We can describe the overall process using a 
Dynamic Bayes Network:

(measurement)

(state)
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Graphical Representation

p(xt | x0:t�1, u1:t, z1:t�1) = p(xt | xt�1, ut)

p(zt | x0:t, u1:t, z1:t) = p(zt | xt)
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(Bayes)

(Markov)

(Tot. prob.)

(Markov)

(Markov)
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The Overall Bayes Filter
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 Algorithm Bayes_filter                : 

1.  if    is a sensor measurement    then 

2.   

3.      for all    do 

4.   

5.   

6.      for all    do 

7.  else if    is an action    then 

8.      for all    do 

9.  return      

Machine Learning for Computer 
Vision

The Bayes Filter Algorithm
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Bayes Filter Variants

The Bayes filter principle is used in 

• Kalman filters 

• Particle filters 

• Hidden Markov models 

• Dynamic Bayesian networks 

• Partially Observable Markov Decision Processes 
(POMDPs)
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Summary

• Probabilistic reasoning is necessary to deal with 
uncertain information, e.g. sensor measurements 

• Using Bayes rule, we can do diagnostic reasoning 
based on causal knowledge 

• The outcome of a robot‘s action can be described by a 
state transition diagram 

• Probabilistic state estimation can be done recursively 
using the Bayes filter using a sensor and a motion 
update 

• A graphical representation for the state estimation 
problem is the Dynamic Bayes Network
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2. Regression



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for Computer 
Vision

Categories of Learning (Rep.)

no supervision, but 
a reward function

Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

clustering, density 
estimation

learning from a training 
data set, inference on 

the test data
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Regression Classification

target set        
is discrete, e.g.

Y = [1, . . . , C]

target set        
is continuous, e.g.

Y = R
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Mathematical Formulation (Rep.)

Suppose we are given a set      of objects and a set o 
of object categories (classes). In the learning task we 
search for a mapping                        such that similar 
elements in       are mapped to similar elements in     . 

Difference between regression and classification: 

• In regression,      is continuous, in classification it is 
discrete 

• Regression learns a function, classification usually 
learns class labels 

For now we will treat regression
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Basis Functions

In principal, the elements of      can be anything (e.g. real 
numbers, graphs, 3D objects). To be able to treat these 
objects mathematically we need functions        that map 
from       to        . We call these the basis functions. 

We can also interpret the basis functions as functions 
that extract features from the input data. 

Features reflect the properties of the objects (width, 
height, etc.).
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Simple Example: Linear Regression

• Assume:                                                  (identity) 

• Given:      data points 

• Goal:        predict the value t of a new example x 
• Parametric  formulation:

x1               x2          x3                    x4             x5

t5 

               
t3 

          
t4                    

t1             

t2
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f
f(x,w) = w0 + w1x

f(x,w⇤)
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Linear Regression

To determine the function f, we need an error function: 

We search for parameters         s.th.              is minimal: 

“Sum of 
Squared Errors”
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E(w) =
1

2

NX

i=1

(f(xi,w)� ti)
2

rE(w) =
NX

i=1

(f(xi,w)� ti)rf(xi,w)
·
= (0 0)

f(x,w) = w0 + w1x ) rf(xi,w) = (1 xi)
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Linear Regression

To evaluate the function y, we need an error function: 

We search for parameters         s.th.              is minimal: 

Using vector notation:

“Sum of 
Squared Errors”
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Linear Regression

To evaluate the function y, we need an error function: 

We search for parameters         s.th.              is minimal: 

Using vector notation:

“Sum of 
Squared Errors”
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Polynomial Regression

Now we have: 

Given:  data points  

Assume we are given M basis functions   

Model 
Complexity

Data Set 
Size
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f(x,w) = w0 +
MX

i=1

wj�j(x) = wT�(x)
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Polynomial Regression

We have defined:  

Therefore: 

   

Outer 
Product
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Polynomial Regression
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Polynomial Regression
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Polynomial Regression

Thus, we have:  

where 

It follows:

“Pseudoinverse”

23
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“Normal Equation”
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Computing the Pseudoinverse

Mathematically, a pseudoinverse      exists for 
every matrix   .  

However: If    is (close to) singular the direct 
solution of    is numerically unstable. 

Therefore: Singular Value Decomposition (SVD) is 
used:                  where 

• matrices U and V are orthogonal matrices 

•D is a diagonal matrix 

Then:                         where       contains the 

reciprocal of all non-zero elements of D 
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A Simple Example
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A Simple Example

26

“Overfitting”
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Varying the Sample Size
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The Resulting Model Parameters
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Observations

• The higher the model complexity grows, the better 
is the fit to the data 

• If the model complexity is too high, all data points 
are explained well, but the resulting model oscillates 
very much. It can not generalize well. 
This is called overfitting. 

• By increasing the size of the data set (number of 
samples), we obtain a better fit of the model 

• More complex models have larger parameters 

Problem: How can we find a good model complexity   
for a given data set with a fixed size?  
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Regularization

We observed that complex models yield large 
parameters, leading to oscillation. Idea: 

Minimize the error function and the magnitude of the 
parameters simultaneously 

We do this by adding a regularization term : 

where λ rules the influence of the regularization.
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Regularization

As above, we set the derivative to zero: 

With regularization, we can find a complex model for a 
small data set. However, the problem now is to find an 

appropriate regularization coefficient λ.

31
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Regularized Results

32
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The Problem from a Different View Point

Assume that y is affected by Gaussian noise : 

                                       where 

Thus, we have  
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t = f(x,w) + ✏

p(t | x,w,�) = N (t; f(x,w),�2)
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Maximum Likelihood Estimation

Aim: we want to find the w that maximizes p. 
                        is the likelihood of the measured data 
given a model. Intuitively: 

Find parameters w that maximize the probability of 

measuring the already measured data t. 
   

We can think of this as fitting a model w to the data t. 
Note: σ is also part of the model and can be estimated.  

For now, we assume σ is known.   

“Maximum Likelihood Estimation”
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Maximum Likelihood Estimation

Given data points: 

Assumption: points are drawn independently from p:

where: Instead of maximizing p we 
can also maximize its 

logarithm (monotonicity of 
the logarithm)
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Maximum Likelihood Estimation

Constant  for all w Is equal to       

The parameters that maximize the likelihood are equal 
to the minimum of the sum of squared errors
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Maximum Likelihood Estimation
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The ML solution is obtained using the Pseudoinverse

ln p(ti | xi,w,�)
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Maximum A-Posteriori Estimation

So far, we searched for parameters w, that maximize 

the data likelihood. Now, we assume a Gaussian prior: 

Using this, we can compute the posterior (Bayes):

“Maximum A-Posteriori Estimation (MAP)”

38

Likelihood Prior Posterior 

p(w | x, t) / p(t | w,x)p(w)
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Maximum A-Posteriori Estimation

So far, we searched for parameters w, that maximize 

the data likelihood. Now, we assume a Gaussian prior: 

Using this, we can compute the posterior (Bayes): 

strictly: 

but the denominator is independent of w and we want 

to maximize p.
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p(w | x, t,�1,�2) =
p(t | x,w,�1)p(w | �2)R
p(t | x,w,�1)p(w | �2)dw
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Maximum A-Posteriori Estimation

This is equal to the regularized error minimization. 

The MAP Estimate corresponds to a regularized 

error minimization where λ = (σ1 / σ2 )2  

   
40
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Summary: MAP Estimation

To summarize, we have the following optimization 
problem: 

The same in vector notation: 
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