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Summary: MAP Estimation

To summarize, we have the following optimization 
problem: 

The same in vector notation: 
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Summary: MAP Estimation

To summarize, we have the following optimization 
problem: 

The same in vector notation: 

And the solution is  
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MLE And MAP

• The benefit of MAP over MLE is that prediction is 
less sensitive to overfitting, i.e. even if there is 
only little data the model predicts well. 

• This is achieved by using prior information, i.e. 
model assumptions that are not based on any 
observations (= data) 

• But: both methods only give the most likely 
model, there is no notion of uncertainty yet 

Idea 1: Find a distribution over model parameters 
(“parameter posterior”) 
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MLE And MAP

• The benefit of MAP over MLE is that prediction is 
less sensitive to overfitting, i.e. even if there is 
only little data the model predicts well. 

• This is achieved by using prior information, i.e. 
model assumptions that are not based on any 
observations (= data) 

• But: both methods only give the most likely 
model, there is no notion of uncertainty yet 

Idea 1: Find a distribution over model parameters 

Idea 2: Use that distribution to estimate prediction 
uncertainty (“predictive distribution”)
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When Bayes Meets Gauß

Theorem: If we are given this: 

                  I. 

                  II. 

Then it follows (properties of Gaussians): 

     III. 

     IV. 

where
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p(x) = N (x | µ,⌃1)

p(y | x) = N (y | Ax+ b,⌃2)

p(y) = N (y | Aµ+ b,⌃2 +A⌃1A
T )
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”Linear Gaussian Model”

linear 

dependency  
on x

See Bishop’s book 
for the proof!
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When Bayes Meets Gauß

Thus: When using the Bayesian approach, we 
can do even more than MLE and MAP by using 
these formulae. 

This means: 

                   

If the prior and the likelihood are Gaussian then the 
posterior and the normalizer are also Gaussian and 
we can compute them in closed form. 

This gives us a natural way to compute uncertainty!
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The Posterior Distribution

Remember Bayes Rule: 

With our theorem, we can compute the posterior 
in closed form (and not just its maximum)! 

The posterior is also a Gaussian and its mean is 
the MAP solution.

7

Likelihood Prior Posterior 

p(w | x, t) / p(t | w,x)p(w)



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

The Posterior Distribution

We have  

and 

From this and IV. we get the posterior covariance: 

and the mean: 

So the entire posterior distribution is  
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Note: So far we 
only used the 
training data!
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The Predictive Distribution

We obtain the predictive distribution by integrating 
over all possible model parameters (“inference”): 

This distribution can be computed in closed form, 
because both terms on the RHS are Gaussian. 

From above we have 

   where 

  and 

Parameter posterior Test data likelihood 
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The Predictive Distribution

We obtain the predictive distribution by integrating 
over all possible model parameters (“inference”): 

This distribution can be computed in closed form, 
because both terms on the RHS are Gaussian. 

From above we have 

   where 

  and 

Parameter posterior Test data likelihood 
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The Predictive Distribution

Using formula III. from above (linear Gaussian),  

                                          

                   where 
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The Predictive Distribution (2)

• Example: Sinusoidal data, 9 Gaussian basis 
functions, 1 data point

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution

12
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Predictive Distribution (3)

• Example: Sinusoidal data, 9 Gaussian basis 
functions, 2 data points

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution

13
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Predictive Distribution (4)

• Example: Sinusoidal data, 9 Gaussian basis 
functions, 4 data points

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution

14
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Predictive Distribution (5)

• Example: Sinusoidal data, 9 Gaussian basis 
functions, 25 data points

From: C.M. Bishop

Some samples from 
the posterior

The predictive distribution

15
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Summary

• Regression can be expressed as a least-squares 
problem 

• To avoid overfitting, we need to introduce a 

regularisation term with an additional parameter λ 
• Regression without regularisation is equivalent to 

Maximum Likelihood Estimation 

• Regression with regularisation is Maximum A-Posteriori 

• When using Gaussian priors (and Gaussian noise), all 
computations can be done analytically 

• This gives a closed form of the parameter posterior and 
the predictive distribution

16
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(Bayes)

The Bayes Filter (Rep.)

(Markov)

(Tot. prob.)

(Markov)

(Markov)

18
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• This incorporates the following Markov assumptions:

Graphical Representation (Rep.)

We can describe the overall process using a 
Dynamic Bayes Network:

(measurement)

(state)

19
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Definition

A Probabilistic Graphical Model is a diagrammatic 
representation of a probability distribution. 

• In a Graphical Model, random variables are 
represented as nodes, and statistical dependencies 
are represented using edges between the nodes. 

• The resulting graph can have the following properties: 

• Cyclic / acyclic 

• Directed / undirected 

• The simplest graphs are Directed Acyclig Graphs 
(DAG).

20
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Simple Example

• Given: 3 random variables    ,    , and  

• Joint prob: 

A Graphical Model based on a DAG is called a  
Bayesian Network

Random 
variables can be 

discrete or 
continuous

21
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Simple Example

• In general:       random variables 

• Joint prob: 

• This leads to a fully connected graph. 

• Note: The ordering of the nodes in such a fully 
connected graph is arbitrary. They all represent the 
joint probability distribution:

…

22
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Bayesian Networks

Statistical independence can be represented by the 
absence of edges. This makes the computation 
efficient. 

                                          

  Intuitively: only      and  

   have an influence on 

23
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Bayesian Networks

We can now define a one-to-one mapping from 
graphical models to probabilistic formulations:

General Factorization:

where

and

ancestors of

24
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Elements of Graphical Models 

In case of a series of random variables with equal 
dependencies, we can subsume them using a plate:

Plate

25
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Elements of Graphical Models (2) 

We distinguish between input variables and explicit 
hyper-parameters:

26
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Elements of Graphical Models (3) 

We distinguish between observed variables and 
hidden variables: 

                                

                 (deterministic  parameters omitted in formula)

27
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Example: Regression as a Graphical Model

Aim: Find a general expression to compute the 
predictive distribution: 

This expression should 

• model all conditional independencies 

• explicitly incorporate all parameters (also the   
deterministic ones)  

28

Notation:

t̂ = t⇤
p(t̂ | x̂,x, t)

Bishop vs.  
Rasmussen
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Example: Regression as a Graphical Model

Aim: Find a general expression to compute the 
predictive distribution: 

This expression should 

• model all conditional independencies 

• explicitly incorporate all parameters (also the   
deterministic ones)  

29

Notation:

t̂ = t⇤
p(t̂ | x̂,x, t)

Bishop vs.  
Rasmussen

p(t̂ | x̂,x, t,↵,�2) =

Z
p(t̂,w | x̂,x, t,↵,�2)dw

=

Z
p(t̂,w, t | x̂,x,↵,�2)

p(t | x̂,x,↵,�2)
dw

/
Z

p(t̂,w, t | x̂,x,↵,�2)dw
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Regression as a Graphical Model

Here: conditioning on all  
deterministic parameters

Regression: Prediction of a new target value 

Using this, we can obtain 
the predictive distribution: 

30

Notation:

t̂ = t⇤
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Example: Discrete Variables

• Two dependent variables: K2 - 1 parameters 

• Independent joint distribution: 2(K – 1) parameters

1 0.2

2 0.8

1 1 0.25

1 2 0.75

2 1 0.1

2 2 0.9

Here: K = 2
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Discrete Variables: General Case

In a general joint distribution with M variables we need 

to store KM -1 parameters 

If the distribution can be described by this graph: 

then we have only K -1 + (M -1) K(K -1) parameters.  

This graph is called a Markov chain with M  nodes. 

The number of parameters grows only linearly with  
the number of variables.

32
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Definition 1.4: Two random variables       and      are 
independent iff:   

 

 
  

 

For independent random variables       and      we have:  

 

 
  

 

Independence (Rep.)

Notation:

Independence does not imply conditional independence! 

The same is true for the opposite case.
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Conditional Independence (Rep.)

Definition 1.5: Two random variables       and      are 
conditional independent given a third random 
variable      iff:   

 

 
  

 

This is equivalent to:

and

Notation:

34
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Conditional Independence: Example 1

This graph represents the 
probability distribution: 

Marginalizing out c on 
both sides gives

Thus:      and     are not independent:

35

This is in general not equal to             .p(a)p(b)
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Conditional Independence: Example 1

Now, we condition on    ( it is assumed to be known): 

Thus:      and      are conditionally independent given   : 

We say that the node at    is a tail-to-tail node on the 
path between     and  
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Conditional Independence: Example 2

This graph represents the 
distribution:

Again, we marginalize over   :

And we obtain:
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Conditional Independence: Example 2

As before, now we condition on    : 

And we obtain:

We say that the node at    is a head-to-tail node 
on the path between     and   .

38
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p(a, b, c) = p(a)p(b)
X

c

p(c | a, b)
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Conditional Independence: Example 3

Now consider this graph:

using:

we obtain:

And the result is:
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Conditional Independence: Example 3

Again, we condition on 

This results in:

We say that the node at    is a head-to-head node 
on the path between     and   .

40



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

To Summarize

• When does the graph represent (conditional) 
independence? 

Tail-to-tail case: if we condition on the tail-to-tail node 

Head-to-tail case: if we cond. on the head-to-tail node 

Head-to-head case: if we do not condition on the head-
to-head node (and neither on any of its descendants) 

In general, this leads to the notion of D-separation for 
directed graphical models.
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D-Separation

Say:  A, B, and C are non-intersecting subsets of 
nodes in a directed graph. 

A path from A to B is blocked by C if it contains 
a node such that either 

a) the arrows on the path meet either head-to-tail or tail-to-

tail at the node, and the node is in the set C, or 

b) the arrows meet head-to-head at the node, and neither 

the node, nor any of its descendants, are in the set C. 

If all paths from A to B are blocked, A is said to 
be d-separated from B by C.  

Notation:

42
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D-Separation

Say:  A, B, and C are non-intersecting subsets of 
nodes in a directed graph. 

•A path from A to B is blocked by C if it contains 
a node such that either 

a) the arrows on the path meet either head-to-tail or tail-to-

tail at the node, and the node is in the set C, or 

b) the arrows meet head-to-head at the node, and neither 

the node, nor any of its descendants, are in the set C. 

•If all paths from A to B are blocked, A is said to 
be d-separated from B by C.  

Notation:

43

D-Separation is a 
property of graphs 

and not of 
probability 

distributions
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D-Separation: Example

We condition on a descendant 
of e, i.e. it does not block the 
path from a to b.

We condition on a tail-to-tail 
node on the only path from a 
to b, i.e f blocks the path.
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I-Map

Definition 4.1: A graph G is called an I-map for a 
distribution p if every D-separation of G corresponds 
to a conditional independence relation satisfied by p: 

 

Example:  The fully connected graph is an I-map for any 
distribution, as there are no D-separations in that 
graph.
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D-Map

Definition 4.2: A graph G is called an D-map for a 
distribution p if for every conditional independence 
relation satisfied by p there is a D-separation in G : 
  

 

Example:  The graph without any edges is a D-map for 
any distribution, as all pairs of subsets of nodes are 
D-separated in that graph.  
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Perfect Map

Definition 4.3: A graph G is called a perfect map for a 
distribution p if it is a D-map and an I-map of p. 

 

A perfect map uniquely defines a probability distribution. 
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The Markov Blanket

Consider a distribution of a node xi conditioned on 
all other nodes:

Factors independent of xi 
cancel between numerator 
and denominator.

Markov blanket         at 

xi : all parents, children 

and co-parents of xi.   
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Repetition: Bayesian Networks

Directed graphical models 
can be used to represent 
probability distributions 

This is useful to do 
inference and to generate 
samples from the 
distribution efficiently
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Repetition: D-Separation

50

• D-separation is a property of graphs that can be 
easily determined 

• An I-map assigns every d-separation a c.i. rel 

• A D-map assigns every c.i. rel a d-separation 

• Every Bayes net determines a unique prob. dist. 



p(a) = 0.9 p(b) = 0.9

p(¬c | ¬b) = 0.81
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In-depth: The Head-to-Head Node 

51

Example:  

a: Battery charged (0 or 1) 

b: Fuel tank full (0 or 1) 

c: Fuel gauge says full (0 or 1) 

We can compute 

and 

and obtain 

similarly:   

“a explains c away”

a b p(c)

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

p(¬c) = 0.315

p(¬b | ¬c) ⇡ 0.257

p(¬b | ¬c,¬a) ⇡ 0.111
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Repetition: D-Separation
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Directed vs. Undirected Graphs

Using D-separation we can identify conditional 
independencies in directed graphical models, but: 

• Is there a simpler, more intuitive way to express 
conditional independence in a graph? 

• Can we find a representation for cases where an  
„ordering“ of the random variables is inappropriate 
(e.g. the pixels in a camera image)? 

Yes, we can: by removing the directions of the 
edges we obtain an Undirected Graphical Model, 

also known as a Markov Random Field
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Example: Camera Image

• directions are counter-intuitive for images 

• Markov blanket is not just the direct neighbors 
when using a directed model
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Markov Random Fields

All paths from A to B go 

through C, i.e. C blocks all 
paths.

Markov 
Blanket

We only need to condition 
on the direct neighbors of 

x to get c.i., because these 
already block every path 

from x to any other node.
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Factorization of MRFs

Any two nodes xi and xj that are not connected in an 
MRF are conditionally independent given all other nodes: 

In turn: each factor contains only nodes that are 
connected 

This motivates the consideration  
of cliques in the graph: 

• A clique is a fully connected subgraph. 

• A maximal clique can not be extended 
with another node without loosing the  
property of full connectivity.

Clique

Maximal Clique

56

p(xi, xj | x\{i,j}) = p(xi | x\{i,j})p(xj | x\{i,j})
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Factorization of MRFs
In general, a Markov Random Field is factorized as 

where C is the set of all (maximal) cliques and ΦC  is a 

positive function of a given clique xC of nodes, called 

the clique potential. Z is called the partition function. 

Theorem (Hammersley/Clifford): Any undirected 

model with associated clique potentials ΦC  is a perfect 

map for the probability distribution defined by Equation 
(4.1). 

As a conclusion, all probability distributions that can be 
factorized as in (4.1), can be represented as an MRF.
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Converting Directed to Undirected Graphs (1)

In this case: Z=1

58



x1 x1

x2 x2

x3
x3

x4 x4

p(x) = p(x1)p(x2)p(x2)p(x4 | x1, x2, x3)
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Converting Directed to Undirected Graphs (2)

In general: conditional distributions in the directed graph 
are mapped to cliques in the undirected graph 

However: the variables are not conditionally independent 
given the head-to-head node 

Therefore: Connect all parents of head-to-head nodes with 
each other (moralization)
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x1 x1

x2 x2

x3
x3

x4 x4

p(x) = p(x1)p(x2)p(x2)p(x4 | x1, x2, x3)
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Converting Directed to Undirected Graphs (2)

Problem: This process can remove conditional 
independence relations (inefficient) 

Generally: There is no one-to-one mapping between the 
distributions represented by directed and by undirected 
graphs.

60

p(x) = �(x1, x2, x3, x4)
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Representability

• As for DAGs, we can define an I-map, a D-map 
and a perfect map for MRFs. 

• The set of all distributions for which a DAG 
exists that is a perfect map is different from 
that for MRFs. 

Distributions 
with a DAG as 
perfect map

Distributions 
with an MRF as 

perfect map

All distributions
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Using Graphical Models

We can use a graphical model to do inference: 

• Some nodes in the graph are observed, for others 
we want to find the posterior distribution 

• Also, computing the local marginal distribution p(xn) 
at any node xn can be done using inference. 

Question: How can inference be done with a 

graphical model?   

We will see that when exploiting conditional 
independences we can do efficient inference. 
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Inference on a Chain

The joint probability is given by

The marginal at  x3 is

In the general case with N nodes we have

and
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Inference on a Chain

• This would mean KN computations! A more efficient 
way is obtained by rearranging:

Vectors of size K
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Inference on a Chain

In general, we have
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Inference on a Chain

The messages µα and µβ can be computed 

recursively: 

Computation of  µα starts at the first node and 

computation of  µβ starts at the last node.
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Inference on a Chain

• The first values of µα and µβ are: 

• The partition function can be computed at any node: 

• Overall, we have O(NK2) operations to compute the 
marginal 
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Inference on a Chain

To compute local marginals: 

•Compute and store all forward messages,             . 

•Compute and store all backward messages,              

•Compute Z once at a node xm: 

•Compute 
 
 
for all variables required.
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More General Graphs

The message-passing algorithm can be extended to 
more general graphs:

Directed 
Tree PolytreeUndirected 

Tree

It is then known as the sum-product algorithm.  
A special case of this is belief propagation. 
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Factor Graphs

• The Sum-product algorithm can be used to do 
inference on undirected and directed graphs. 

• A representation that generalizes directed and 
undirected models is the factor graph.

Directed graph Factor graph
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Factor Graphs

• The Sum-product algorithm can be used to do 
inference on undirected and directed graphs. 

• A representation that generalizes directed and 
undirected models is the factor graph.

Undirected graph Factor graph
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Sum-Product Inference in General Graphical Models

1.Convert graph (directed or undirected) into a 
factor graph (there are no cycles) 

2.If the goal is to marginalize at node x, then 

consider x as a root node 

3.Initialize the recursion at the leaf nodes as: 
                          (var)  or                          (fac) 

4.Propagate messages from the leaves to x 
5.Propagate messages from x to the leaves 

6.Obtain marginals at every node by multiplying 
all incoming messages 
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Further Topics on Graphical Models
Other inference algorithms: 

• Max-Sum algorithm: used to maximize the joint 
probability of all variables (no marginalization) 

• Junction Tree algorithm: exact inference for 
general graphs (even with loops) 

• Loopy belief propagation: approximate 
inference on general graphs (more efficient) 

Special kind of undirected GM: 

• Conditional Random fields (e.g.: classification) 

More details: see class of Dr. Domokos  
http://vision.in.tum.de/teaching/ss2016/lecture_graphical_models
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Summary

• Undirected models (aka Markov random fields) 
provide an intuitive representation of conditional 
independence 

• An MRF is defined as a factorization over 
clique potentials and normalized globally 

• Directed and undirected models have different 
representative power (no simple “containment”) 

• Inference on undirected Markov chains is 
efficient using message passing 

• Factor graphs are more general; exact inference 
can be done efficiently using sum-product
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