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Exponential Families

Definition: A probability distribution p over x is a 
member of the exponential family if it can be 
expressed as 

where η are the natural parameters and  

is the normalizer.  

h and u are functions of x.

2

p(x | ⌘) = h(x)g(⌘) exp(⌘T
u(x))

g(⌘) =

 Z
h(x) exp(⌘T

u(x))dx

!�1



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Exponential Families

Example: Bernoulli-Distribution with parameter µ
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p(x | µ) = µx

(1 � µ)1�x

= exp(x ln µ + (1 � x) ln(1 � µ))
= exp(x ln µ + ln(1 � µ) � x ln(1 � µ))
= (1 � µ) exp(x ln µ � x ln(1 � µ))

= (1 � µ) exp

 
x ln

 
µ

1 � µ

!!

Thus, we can say

⌘ = ln
 
µ

1 � µ

!
) µ =

1

1 + exp(�⌘)) 1 � µ = 1

1 + exp(⌘)
= g(⌘)
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Exponential Families

Example: Normal-Distribution with parameters µ 
and σ

4

p(x | µ,�) =
1p

2⇡�2

exp

 
�1

2

(x � µ)2

�2

!

⌘ =

 
µ

�2 ,�
1

2�2

!T

h(x) =
1p
2⇡

u(x) = (x, x2)T
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MLE for Exponential Families

From: 

we get: 

which means that 

5

g(⌘)

Z
h(x) exp(⌘T

u(x))dx = 1

rg(⌘)

Z
h(x) exp(⌘T

u(x))dx + g(⌘)

Z
h(x) exp(⌘T

u(x))u(x)dx = 0

) �rg(⌘)

g(⌘)
= g(⌘)

Z
h(x) exp(⌘T

u(x))u(x)dx = E[u(x)]

�r ln g(⌘) = E[u(x)]
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MLE for Exponential Families

From: 

we get: 

which means that  

u(x) is called the sufficient statistics of p. 

  is the vector of moments.
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g(⌘)

Z
h(x) exp(⌘T

u(x))dx = 1

rg(⌘)

Z
h(x) exp(⌘T

u(x))dx + g(⌘)

Z
h(x) exp(⌘T

u(x))u(x)dx = 0

) �rg(⌘)

g(⌘)
= g(⌘)

Z
h(x) exp(⌘T

u(x))u(x)dx = E[u(x)]

�r ln g(⌘) = E[u(x)]

�r ln g(⌘) = E[u(x)]
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Expectation Propagation

In mean-field we minimized            . But: we can 

also minimize            . Assume q is from the 
exponential family: 

Then we have:

7

KL(qkp)
KL(pkq)

q(z) = h(z)g(⌘) exp(⌘Tu(z))

natural parameters

g(⌘)

Z
h(x) exp(⌘T

u(z))dx = 1

normalizer

KL(pkq) = �
Z

p(x) log

h(z)g(⌘) exp(⌘T
u(z))

p(x)z
z dz



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Expectation Propagation

This results in 

We can minimize this with respect to  

8

⌘

KL(pkq) = � log g(⌘)� ⌘TEp[u(x)] + const

�r log g(⌘) = Ep[u(x)]
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Expectation Propagation

This results in 

We can minimize this with respect to  

which is equivalent to  

Thus: the KL-divergence is minimal if the exp. 

sufficient statistics are the same between p and q! 

For example, if q is Gaussian: 

Then, mean and covariance of q must be the 

same as for p (moment matching) 
9

⌘

KL(pkq) = � log g(⌘)� ⌘TEp[u(x)] + const

�r log g(⌘) = Ep[u(x)]

Eq[u(x)] = Ep[u(x)]

u(x) =

✓
x

x

2

◆
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Expectation Propagation

Assume we have a factorization 

and we are interested in the posterior: 

we use an approximation  

Aim: minimize 

Idea: optimize each of the approximating factors 
in turn, assume exponential family

10

p(D,✓) =
MY

i=1

fi(✓)

p(✓ | D) =
1

p(D)

MY

i=1

fi(✓)

KL

 
1

p(D)

MY

i=1

fi(✓)
���
1

Z

MY

i=1

f̃i(✓)

!

q(✓) =
1

Z

MY

i=1

f̃i(✓)
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The EP Algorithm

• Given: a joint distribution over data and variables 

• Goal: approximate the posterior              with q 

• Initialize all approximating factors 

• Initialize the posterior approximation 

• Do until convergence: 

•choose a factor  

•remove the factor from q by division:
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p(D,✓) =
MY

i=1

fi(✓)

f̃i(✓)

q(✓) /
Y

i

f̃i(✓)

f̃j(✓)

q\j(✓) =
q(✓)

f̃j(✓)

p(✓ | D)
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The EP Algorithm

•find         that minimizes  
 
 
 
using moment matching, including the zeroth order 
moment: 

•evaluate the new factor  

• After convergence, we have  

12

KL

✓
fj(✓)q\j(✓)

Zj

���qnew(✓)
◆

qnew

Zj =

Z
q\j(✓)fj(✓)d✓

f̃j(✓) = Zj
qnew(✓)

q\j(✓)

p(D) ⇡
Z Y

i

f̃j(✓)d✓
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Properties of EP

• There is no guarantee that the iterations will 
converge 

• This is in contrast to variational Bayes, where 
iterations do not decrease the lower bound 

• EP minimizes              where variational Bayes 
minimizes
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KL(pkq)

KL(qkp)KL(pkq)

KL(qkp)
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Example

yellow: original distribution 

red: Laplace approximation 

green: global variation 

blue: expectation-propagation

14
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p(✓) = N (✓ | 0, bI)

The Clutter Problem

• Aim: fit a multivariate Gaussian into data in the 
presence of background clutter (also Gaussian) 

• The prior is Gaussian:

15

p(x | ✓) = (1� w)N (x | ✓, I) + wN (x | 0, aI)
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The Clutter Problem

The joint distribution for                          is 

this is a mixture of       Gaussians! This is 

intractable for large N. Instead, we approximate 
it using a spherical Gaussian: 

the factors are (unnormalized) Gaussians:
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D = (x1, . . . ,xN )

p(D,✓) = p(✓)
NY

n=1

p(xn | ✓)

2N

f̃n(✓) = snN (✓ | mn, vnI)

q(✓) = N (✓ | m, vI) = f̃0(✓)
NY

n=1

f̃n(✓)

f̃0(✓) = p(✓)
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EP for the Clutter Problem

• First, we initialize                , i.e.  

• Iterate:  

•Remove the current estimate of           from q by 
division of Gaussians:

17

f̃n(✓) = 1 q(✓) = p(✓)

f̃n(✓)

q�n(✓) =
q(✓)

f̃n(✓)
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EP for the Clutter Problem

• First, we initialize                , i.e.  

• Iterate:  

•Remove the current estimate of           from q by 
division of Gaussians: 

•Compute the normalization constant: 

•Compute mean and variance of  

•  Update the factor
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f̃n(✓) = 1 q(✓) = p(✓)

f̃n(✓)

q�n(✓) =
q(✓)

f̃n(✓)
q�n(✓) = N (✓ | m�n, v�nI)

Zn =

Z
q�n(✓)fn(✓)d✓

qnew = q�n(✓)fn(✓)

f̃n(✓) = Zn
qnew(✓)

q�n(✓)



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

q�n(✓)

A 1D Example

• blue: true factor 

• red: approximate factor  

• green: cavity distribution   

The form of             controls the range over which 
         will be a good approximation of  
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f̃n(✓)

fn(✓)

q�n(✓)

f̃n(✓) fn(✓)
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Summary

• Variational Inference uses approximation of 
functions so that the KL-divergence is minimal 

• In mean-field theory, factors are optimized 
sequentially by taking the expectation over all 
other variables 

• Expectation propagation minimizes the 
reverse KL-divergence of a single factor by 
moment matching; factors are in the exp. family

20
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Sampling Methods
Sampling Methods are widely used in Computer 
Science 

• as an approximation of a deterministic algorithm 

• to represent uncertainty without a parametric model 

• to obtain higher computational efficiency with a 
small approximation error 

Sampling Methods are also often 
called Monte Carlo Methods 

Example: Monte-Carlo Integration 

• Sample in the bounding box 

• Compute fraction of inliers 

•Multiply fraction with box size

22
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Non-Parametric Representation

Probability distributions (e.g. a robot‘s belief) can 
be represeted: 

• Parametrically: e.g. using mean and covariance 
of a Gaussian 

• Non-parametrically: using a set of hypotheses 
(samples) drawn from the distribution 

Advantage of non-parametric representation: 

• No restriction on the type of distribution (e.g. can 
be multi-modal, non- Gaussian, etc.)

23
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Non-Parametric Representation

The more samples are in an interval, the higher the probability 

of that interval 

But: 

How to draw samples from a function/distribution?

24
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Sampling from a Distribution

There are several approaches: 

• Probability transformation 

• Uses inverse of the c.d.f (not considered here) 

• Rejection Sampling 

• Importance Sampling 

• Markov Chain Monte Carlo

25
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• If                :  
 keep the sample 
otherwise:  
 reject the sample 

Rejection Sampling

1. Simplification: 

• Assume                for all z 

• Sample z uniformly 

• Sample c from 

c

f(z)
c’

z’

f(z’)

OK
z

26
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Rejection Sampling

2. General case: 

Assume we can evaluate 

• Find proposal distribution q 

• Easy to sample from q 

• Find k with 

• Sample from q   

• Sample uniformly  
from [0,kq(z0)] 

• Reject if  

But: Rejection sampling is inefficient.

(unnormalized)

Rejection 

area

27
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•Idea:  assign an importance weight w to each 

sample 

•With the importance weights, we can account for the 

“differences between p and q ” 

•p is called target 

•q is called proposal  
(as before)

Importance Sampling

28
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•Explanation: The prob. of falling  
in an interval A is the area under p 

•This is equal to the expectation of  
the indicator function 

Importance Sampling

A

29
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•Explanation: The prob. of falling  
in an interval A is the area under p 

•This is equal to the expectation of  
the indicator function 

Approximation with  
samples drawn from q:

Importance Sampling

Requirement:

A

30


