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Exponential Families

Definition: A probability distribution p over x is a
member of the exponential family if it can be
expressed as

p(x | 1) = h(x)g(1) exp(iy’ u(x))
where » are the natural parameters and
-1

¢(1p) = ( f 1) exp(n u(x))dx
Is the normalizer.

h and u are functions of x.

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group




Exponential Families

Example: Bernoulli-Distribution with parameter u

px | p) =p Q-
=exp(xIny + (1 — x)In(1 — w))
=exp(xInu + In(1 — u) — xIn(1 — w))

= —wexp(xIny — xIn(1 — w))

= (1 —,u)exp(xln( £ ))
1 —p

Thus, we can say

77:1n( a ) : = : = 1 : = 8(n)
L—u)” P77 T+exp-n) : ~ 8
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Exponential Families

Example: Normal-Distribution with parameters u
and o

B 1 1 (x — p)?
pLEii o) = \/ZﬂO'ZeXP( 2 o’ )

h(x) = u(x) = (x, x*)"

I
V2
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MLE for Exponential Families

From: g(n) f h(X) exp(nTu(x))dx =1
we get:

Vg(n) f h(x) exp(n’ u(x))dx + g(n) f h(x) exp(n’ u(x))u(x)dx = 0

Vg(n)
g(1n)

= g(n) f h(X) eXP(I]Tu(X))ll(X)dX = E[u(x)]

which means that —Ving(n) = E[u(x)]
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MLE for Exponential Families

From: g(n) f h(X) exp(nTu(x))dx =1
we get:

Vg(n) f h(x) exp(n’ u(x))dx + g(n) f h(x) exp(n’ u(x))u(x)dx = 0

Vg(n)
g(1n)

= g(n) f h(X) eXP(I]Tu(X))ll(X)dX = E[u(x)]

which means that —Ving(n) = E[u(x)]

u(x) is called the sufficient statistics of p.
E[u(x)] IS the vector of moments.
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Expectation Propagation

In mean-field we minimized KL(q||p). But: we can
also minimize KL(p|lg). Assume ¢ Is from the
exponential family: natural parameters

q(z) = h(z)g(nyexp(n” G(z))

e

— normalizer

g(n) / h(x) exp(nTu(z))dx = 1

Then we have:

p(z)
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Expectation Propagation

This results in KL(p|lq) = —log g(n) — n' E,[u(x)] + const
We can minimize this with respect to n

—Vlogg(n) = Epu(x))
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Expectation Propagation

This results in KL(p|lq) = —log g(n) — n” E,[u(x)] + const
We can minimize this with respect to n

—Vlogg(n) = E,[u(x)]
which is equivalent to
Lqlu(x)] = Ep[u(x),
Thus: the KL-divergence is minimal if the exp.
sufficient statistics are the same between p and ¢!

For example, if g is Gaussian: u(z) = ( 52 >

Then, mean and covariance of g must be the
same as for p (moment matching)
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Expectation Propagation

Assume we have a factorization p(D, 6) H f:(0
and we are interested in the posterlor. =

p(6 | D) = Hfze

M

we use an approximation ¢(9) = %H 7:(0)
=1

)
1

. S R 1 = -
Aim: minimize KL (M}_[lfi(e)‘zznfi(e )

Idea: optimize each of the approximating factors
In turn, assume exponential family

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



The EP Algorithm

e (Given: a joint distribution over data and variables

p(D, 9) — H fz(g)

®* Goal: approximate the posterior p(6 | D) with ¢
e |nitialize all approximating factors f;(6)
* |nitialize the posterior approximation ¢(8) « H £:(0)
* Do until convergence: Z'
e choose a factor f;(6)

* remove the factor from ¢ by division: ¢V (8) = =
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The EP Algorithm
that minimizes

KL (fj(H)g\j(H)

new

*find ¢

qneW(9)>
using moment matching, including the zeroth order

moment: |
Z = [ 49(6)1,(6)d6

¢ cvaluate the new factor

_ qnew(g)

f](g) — Zj C]\J(H)

* After convergence, we have p(D) ~ / H fi(6)de
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Properties of EP

* There is no guarantee that the iterations will
converge

* This Is in contrast to variational Bayes, where
iterations do not decrease the lower bound

* EP minimizes K L(p|/q) where variational Bayes
minimizes K L(q||p)

N =)
5

K L(q|[p)
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Example
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yellow: original distribution
red: Laplace approximation
green: global variation

blue: expectation-propagation
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The Clutter Problem

-5 0 0 5 T 10

e Aim: fit a multivariate Gauséian into data in the
presence of background clutter (also Gaussian)

p(x|0)=(1—-wN(x|0,I)+wN(x|0,al)
* The prior is Gaussian: p(6) = N'(0 ] 0,b])
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The Clutter Problem

The joint distribution for D (X1,...,xn) IS

H (x5, | O)

this is a mixture of 2% Gaussians! This is

intractable for large N. Instead, we approximate

it using a spherical Gaussian:
N

1(6) = N® | m,oD) = fo(®) ][ 7.

the factors are (unnormalized) Gaussmns.
fO(H) :p(H) fn(g) — SnN(g | mnavnl)
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EP for the Clutter Problem

* First, we initialize f,(0)=1,i.e. ¢(8) = p(0)
° [terate:

* Remove the current estimate of f,,(0) from ¢ by
division of Gaussians:

. (0) = 1(6)
1O =7 )
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EP for the Clutter Problem

* First, we initialize f,(0)=1,i.e. ¢(8) = p(0)
° [terate:

* Remove the current estimate of f,,(0) from ¢ by
division of Gaussians:

. (0) = 1(6)
10 =7 )

e Compute the normalization constant:
Lin = /q—n(e)fn(g)de

e Compute mean and variance of ¢*°V =q_,(0)f,.(0)
 Update the factor 7,0) = 2,4 %

q_n(0) =N(O | m_,,,v_,1)

Q—n(g)
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A 1D Example

-5 0 5 0 10 = 0 > 0 10

* blue: true factor f,,(0)
* red: approximate factor ¢, (0)
® green: cavity distribution ¢_,,(6)

The form of ¢_,(8) controls the range over which
7.(0) will be a good approximation of f,(6)
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Summary

e Variational Inference uses approximation of
functions so that the KL-divergence is minimal

* |n mean-field theory, factors are optimized
sequentially by taking the expectation over all
other variables

e Expectation propagation minimizes the
reverse KL-divergence of a single factor by
moment matching; factors are in the exp. family
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Sampling Methods

Sampling Methods are widely used in Computer
Science

« as an approximation of a deterministic algorithm
 to represent uncertainty without a parametric model

 to obtain higher computational efficiency with a
small approximation error

Sampling Methods are also often
called Monte Carlo Methods >l

Example: Monte-Carlo Integration o
« Sample in the bounding box
« Compute fraction of inliers
« Multiply fraction with box size 1
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Non-Parametric Representation

Probability distributions (e.g. a robot‘s belief) can
be represeted:

« Parametrically: e.g. using mean and covariance
of a Gaussian

« Non-parametrically: using a set of hypotheses
(samples) drawn from the distribution

Advantage of non-parametric representation:

« No restriction on the type of distribution (e.g. can
be multi-modal, non- Gaussian, etc.)
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Non-Parametric Representation

f(x) f(x)
= samples = samples
20 20

3, 3
= =
—~ —
E E
< O
= =
- .
X X

The more samples are in an interval, the higher the probability
of that interval

But:
How to draw samples from a function/distribution?
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Sampling from a Distribution
There are several approaches:

« Probability transformation
« Uses inverse of the c.d.f (not considered here)
« Rejection Sampling
« Importance Sampling
« Markov Chain Monte Carlo
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Rejection Sampling

1. Simplification: oIf f(2)>c :
e Assume p(z) <1 forall z the sample
e Sample z uniformly otherwise:
 Sample ¢ from [0, 1] the sample
f(x)

= samples

3 |

= Co )

= C’

= f(2)

E . OK

a¥ Z Z

T ANKAURATAN {0 MIRAR ]
X

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Rejection Sampling
2. General case:

~

Assume we can evaluate p(z) = Z—p(Z) (unnormalized)
D

e Find g

e Easy to sample from @
o Find k with kq(z) > p(z)
e Sample from g

e Sample uniformly
from [0,kq(zy)] AN P()
® Reject if ug > p(zo) i . L __.

But: Rejection sampling is inefficient.
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Importance Sampling

®dea: assign an w 1o each
sample

®\\ith the importance weights, we can account for the
“differences between pand q”

w(a:) = p(IE)/Q(ZE) proposal(x)

= target(X)

: o) " ‘

o pDIS called g samples
®( is called z
(as before) E
%

X
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Importance Sampling

® Explanation: The prob. of falling
In an interval A is the under p

® This is equal to the expectation of
the [(x € A)

EP[I(ZEA)]z/ (2)I(z € A)dz %&
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Importance Sampling

® Explanation: The prob. of falling
In an interval A is the under p

® This is equal to the expectation of
the [(x € A)

EP[I(ZEA)]=/ (2)I(z € A)dz %\

= /%q(z)](z € A)dz = E lw(z)I(z € A)]
>0=qg(x) >0

Approximation with L
samples drawn from Q: Eqlw(z)I(z € A)

Requirement: p()

N
| =
S
8
ey
8
M
=
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