
Robotic 3D Vision Computer Vision Group
Prof. Dr. Jörg Stückler, Rui Wang Department of Informatics
Winter Semester 2017/2018 Technical University of Munich

Exercise Sheet 1
Topic: Image Formation, Extended Kalman Filter

Submission deadline: Wednesday, 15.11.2017, 23:59
Hand-in via email to rob3dvis-ws17@vision.in.tum.de

General Notice

All exercises can be done in teams of up to three students. Please hand-in your so-
lution before the submission deadline, indicating names and matriculation numbers
of your team members. Teams are encouraged to present their submitted solution
during the exercise sessions.

Exercise 1.1: Image Formation

In this exercise, you will implement basic image processing, projection using the
pin-hole camera model and image undistortion using Matlab.

Figure 1: Checkerboard coordinate frame.

(a) Obtain the image data for this part of the exercise from the course webpage.
The archive contains two images sample_undistorted.png and
sample_distorted.png. Read the sample images (imread) and convert them
to grayscale using rgb2gray.

1

(b) Start with the undistorted sample image and draw all the corners in the
checkerboard pattern by projecting their 3D coordinates into the image. For
this, we define a coordinate frame on the checkerboard whose origin is in the
upper left inner corner of the pattern (see Fig. 1). The x-axis is parallel to the
longer side of the pattern with increasing values towards the right in the sam-
ple image. The y-axis points downwards along the shorter side of the pattern
in the image. The length between the corners on the checkerboard is 0.04 m.

The transformation from checkerboard frame to camera frame is given by
ω1 = −0.372483192214, ω2 = 0.0397022486165, ω3 = 0.0650393402332, t1 =
−0.107035863625, t2 = −0.147065242923, t3 = 0.398512498053 in axis-angle
representation (ω1, ω2, ω3) for the rotational part and in meters (t1, t2, t3) for
the translational part. The camera intrinsics for the undistorted image are
specified by focal lengths fx = 420.506712, fy = 420.610940 and camera center
cx = 355.2082980, cy = 250.3367870.

For projecting the points on the checkerboard, first create the set of 3D points
in the checkerboard frame. You can use the function meshgrid. Transform the
points into the camera frame and project them into the image plane according
to the pinhole camera model into pixel coordinates using the given camera
intrinsics. Overlay the projected points with the image.

(c) Now repeat the projection and visualization of the checkerboard corners from
the previous step in the distorted image. To this end, you need to apply the
following distortion model to the normalized image coordinates y = π(Tx)
before mapping them to pixel coordinates using the camera matrix yp = Cyd:

yd = (1 + k1r
2 + k2r

4)y, r := ‖y‖2 . (1)

The distortion parameters are k1 = −0.296609 and k2 = 0.080818.

(d) Determine the horizontal and vertical field of view of the camera, measured
horizontally and vertically across the image center in the distorted and the
undistorted case. Hint: Use the following iterative approach to determine
undistorted from distorted image coordinates:

function Undistort(yd)
t← 0
yt ← yd

repeat
r = ‖yt‖2
rd = (1 + k1r

2 + k2r
4)

yt+1 = 1
rd

yd

t← t+ 1
until ‖yt − yt−1‖2 < threshold
return yt

end function

2

Exercise 1.2: Extended Kalman Filter

In this exercise, you will implement a robot localization algorithm based on the
Extended Kalman Filter. We assume the robot moves in the 2D plane, for example,
a wheeled robot with differential drive that moves on the floor inside a building.
This means the robot state xt = (xt, yt, θt)

> is 3-dimensional and composed of the
2-dimensional position xt, yt in the plane and the robot heading θt. We model the
robot motion with an odometry-based motion model in this exercise, i.e. the state-
transition model is

xt = g(xt−1,ut) + εt := xt−1 +

 utr cos(θt−1 + ur1)
utr sin(θt−1 + ur1)

ur1 + ur2

+ εt, εt ∼ N (0,Σdt). (2)

The action ut = (utr, ur1 , ur2)
> is given by translational (utr) and rotational (ur1 , ur2)

motion measurements obtained from wheel odometry. For the noise covariance of
the state-transitions, we assume

Σdt =

 0.1 0 0
0 0.1 0
0 0 0.01

 (3)

The robot measures the range r and bearing φ to 2D landmark points lj = (lj,x, lj,y)
in the environment in the horizontal plane. It measures multiple landmarks in a time
step for which we assume the association ct,i = j of measurements zt,i = (rt,i, φt,i)

>

to landmarks j known. The observation model is

zt,i = h(xt, ct,i) + δt,i :=

(∥∥(xt, yt)
> − (lj,x, lj,y)

>
∥∥
2

atan2(lj,y − yt, lj,x − xt)− θt

)
+ δt,i, δt,i = N (0,Σmt,i).

(4)
For the observation noise of an individual landmark measurement, we assume

Σmt,i =

(
0.1 0
0 0.1

)
. (5)

The complete observation model in each time step, zt = h(xt) + δt with δt =
N (0,Σmt) stacks the M measurements in a single vector zt = (z>t,0, . . . , z

>
t,M−1)

> ∈
RM . Analogously, we write h(xt) := (h(xt, ct,0)

>, . . . , h(xt, ct,M−1)
>)>. The covari-

ance Σmt is formed from the individual measurement covariances,

Σmt =


Σmt,0 0 · · · 0

0 Σmt,1
. . .

...
...

. 0
0 · · · 0 Σmt,M−1

 . (6)

(a) Determine the analytic Jacobians of the state-transition function g(x,ut) and
the observation function h(x) for the robot pose x.

3

(b) Obtain the code sample and data for this part of the exercise from the course
webpage. The archive contains three folders: data, matlab, plots. Implement
EKF prediction and correction to localize the robot by finalizing the code in
files prediction_step.m and correction_step.m.

(c) Run your code and report the final robot pose estimate after processing the
whole dataset. Visualize your final result using the provided plotting functions.
Plot the current state estimate in each time step into a png image and generate
a video from the result sequence using avconv.

Submission instructions

A complete submission consists both of a PDF file with the solutions/answers to the
questions on the exercise sheet and a ZIP file containing the source code that you
used to solve the given problems. Note all names and matriculation numbers of your
team members in the PDF file. Make sure that your ZIP file contains all files neces-
sary to compile and run your code, but it should not contain any build files or bina-
ries. Please submit your solution via email to rob3dvis-ws17@vision.in.tum.de.

4

