
Robotic 3D Vision Computer Vision Group
Prof. Dr. Jörg Stückler, Rui Wang Department of Informatics
Winter Semester 2017/2018 Technical University of Munich

Exercise Sheet 3
Topics: Keypoint Detection and Matching, Direct Visual Odometry

Submission deadline: Wednesday, 13.12.2017, 23:59
Hand-in via email to rob3dvis-ws17@vision.in.tum.de

General Notice

All exercises can be done in teams of up to three students. Please hand-in your so-
lution before the submission deadline, indicating names and matriculation numbers
of your team members. Teams are encouraged to present their submitted solution
during the exercise sessions.

Exercise 3.1: Keypoint Detection and Matching for Motion Estimation

In this exercise, you will implement and analyse keypoint detection and matching al-
gorithms to determine point correspondences for indirect motion estimation between
pairs of images.

(a) Extract the image files 0005.png and 0007.png from folder data/fountain in
the exercise archive. The intrinsic camera calibration parameters for both
images are provided in the file
camera_calibration.txt as the camera intrinsics matrix,

C =

 2759.48 0 1520.69
0 2764.16 1006.81
0 0 1

 . (1)

(b) Find corresponding point pairs using keypoint detection, description and match-
ing. Detect FAST and SURF keypoints using the functions detectFASTFeatures
and detectSURFFeatures functions in matlab. Use the default settings for
both keypoint detectors. Compute BRISK and SURF descriptors for the de-
tected keypoints using the extractFeatures function and match the keypoints
using the second best ratio distance from the lecture. For computing descrip-
tors at SURF keypoints, you should take the scale and rotation of the key-
points into account using the standard settings of SURF features. For FAST
you should use the scale of the detector as descriptor scale (also standard set-
ting). Visualize your matching results for the detector-descriptor combinations
FAST-BRISK, FAST-SURF, SURF-BRISK, SURF-SURF.

1



(c) Implement RANSAC to find the 2D-to-2D motion estimate using the eight-
point algorithm from the lecture for a success probability of 0.99, an outlier
ratio of 0.2 and SURF detector and descriptor. What is the number of re-
quired iterations N for RANSAC with this setting? Determine inliers using a
threshold of 10 pixels on the reprojection error. What is the number of inliers
and the average reprojection error of the final inlier set? What is the run-time
of your algorithm? Compare your results for different detector-descriptor com-
binations (FAST-BRISK, FAST-SURF, SURF-BRISK, SURF-SURF), outlier
ratios (0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.9), and reprojection error thresholds (1,
2, 5, 10, 20, 50 pixels).

Exercise 3.2: Direct Image Alignment

In this exercise, you will implement direct image alignment of RGB-D images to
estimate the camera motion between the images.

(a) Extract the exercise archive to obtain the provided data files. The archive con-
tains RGB and depth images in the data folders rgbd/rgb and rgbd/depth.
The file names of the images specify the recording timestamps in seconds. In
the following, associate the RGB with depth images by the closest timestamp.
The file formats are described here: https://vision.in.tum.de/data/datasets/rgbd-
dataset/file formats

The RGB image timestamps of each subsequent pair are

P1 = (1305031102.175304, 1305031102.275326)

P2 = (1341847980.722988, 1341847982.998783)
(2)

The corresponding camera intrinsics matrices C1 and C2 of the RGB image
pairs are:

C1 =

 517.3 0 318.6
0 516.5 255.3
0 0 1

 , C2 =

 535.4 0 320.1
0 539.2 247.6
0 0 1

 (3)

Note: Convert the RGB images to floating point grayscale images before pro-
cessing them. The depth images represent depth values by 16-bit integer values
and need to be scaled by a factor of 1/5000 to obtain metric depth. Convert the
depth images to floating point metric values before further processing them.

Use the provided downscale function to downsample the images 4 times with
sampling factor 2. Display the images in original resolution and their down-
sampled versions.

(b) Implement the se3Exp and se3Log functions in the respective scripts. Hint:
matlab provides an implementation of the matrix exponential and logarithm.

2



(c) Implement the calcResidual function in the respective script such that it
determines the photometric residual between the two images on the original
resolution. The function should return the residuals in a vector. Display the
residual image.

(d) Use the calcResidual function to implement numeric differentiation of the
direct image alignment residuals for a left-multiplied pose increment. Use twist
coordinates to represent pose and apply small pose increments (10−6) on each
twist coordinate individually to determine the numeric derivatives. Implement
the function in the deriveResidualsNumeric.m script.

(e) Implement the Gauss-Newton step in the doAlignment.m script and a suit-
able stopping criterion for the Gauss-Newton iterations. Finalize the script
to determine the relative camera motion for the two image pairs P1 and P2

through direct image alignment using the numeric derivative of the residuals.
For pair P1, the resulting pose should be close to

ξ1 = (−0.0018, 0.0065, 0.0369,−0.0287,−0.0184,−0.0004)> (4)

For pair P2 it should be close to

ξ2 = (0.2979,−0.0106, 0.0452,−0.0041,−0.0993,−0.0421)> . (5)

Compare your results with the ground truth and discuss your results.

(f) Implement the analytic derivative of the residuals for the left-multiplied pose
increment (in script deriveResidualsAnalytic.m). Use twist coordinates
again to represent the pose. Run Gauss-Newton iterations with analytic
derivatives using the doAlignment.m script. What are your observations wrt.
accuracy and run-time in comparison to numeric differentiation?

(g) Use iteratively reweighted least squares to implement the Huber norm

‖r‖δ =

{
1
2
‖r‖22 , if ‖r‖2 ≤ δ

δ
(
‖r‖1 −

1
2
δ
)

, otherwise
(6)

on the residuals. First derive the weights for the Huber norm in each iteration.
Test the weighting on the defective RGB-D image pair in the data archive and
compare the result with the unweighted Gauss-Newton method when using
analytic derivatives. Hint: Find weights for the l2 residuals such that Gauss-
Newton corresponds to optimizing an error function with the Huber-norm on
the residuals.

Submission instructions

A complete submission consists both of a PDF file with the solutions/answers to the
questions on the exercise sheet and a ZIP file containing the source code that you
used to solve the given problems. Note all names and matriculation numbers of your

3



team members in the PDF file. Make sure that your ZIP file contains all files neces-
sary to compile and run your code, but it should not contain any build files or bina-
ries. Please submit your solution via email to rob3dvis-ws17@vision.in.tum.de.

4


