
Robotic 3D Vision Computer Vision Group
Prof. Dr. Jörg Stückler, Rui Wang Department of Informatics
Winter Semester 2017/2018 Technical University of Munich

Exercise Sheet 4
Topics: EKF-SLAM, Direct Visual SLAM, Pose Graph Optimization

Submission deadline: Wednesday, 10.01.2018, 23:59
Hand-in via email to rob3dvis-ws17@vision.in.tum.de

General Notice

All exercises can be done in teams of up to three students. Please hand-in your so-
lution before the submission deadline, indicating names and matriculation numbers
of your team members. Teams are encouraged to present their submitted solution
during the exercise sessions.

Exercise 4.1: EKF-SLAM

In this exercise, you will implement an EKF-SLAM algorithm. We assume the robot
moves in the 2D plane, for example, a wheeled robot with differential drive that
moves on the floor inside a building. This means the robot state ξt = (xt, yt, θt)

>

is 3-dimensional and composed of the 2-dimensional position xt, yt in the plane and
the robot heading θt. We model the robot motion with an odometry-based motion
model in this exercise, i.e. the state-transition model is

ξt = g(ξt−1,ut) + εt := ξt−1 +

 utr cos(θt−1 + ur1)
utr sin(θt−1 + ur1)

ur1 + ur2

+ εt, εt ∼ N (0,Σdt). (1)

The action ut = (utr, ur1 , ur2)
> is given by translational (utr) and rotational (ur1 , ur2)

motion measurements obtained from wheel odometry. For the noise covariance of
the state-transitions, we assume

Σdt =

 0.1 0 0
0 0.1 0
0 0 0.01

 (2)

The robot measures the range r and bearing φ to 2D landmark points lj = (lj,x, lj,y)
in the environment in the horizontal plane. The full state vector x of the EKF is the
vector stacked from robot state ξ and all landmark points lj. The robot measures
multiple landmarks in a time step for which we assume the association ct,i = j of
measurements zt,i = (rt,i, φt,i)

> to landmarks j known. The observation model is

zt,i = h(xt, ct,i) + δt,i :=

(∥∥(xt, yt)
> − (lj,x, lj,y)

>
∥∥
2

atan2(lj,y − yt, lj,x − xt)− θt

)
+ δt,i, δt,i = N (0,Σmt,i).

(3)

1

For the observation noise of an individual landmark measurement, we assume

Σmt,i =

(
0.1 0
0 0.1

)
. (4)

The complete observation model in each time step, zt = h(xt) + δt with δt =
N (0,Σmt) stacks the M measurements in a single vector zt = (z>t,0, . . . , z

>
t,M−1)

> ∈
RM . Analogously, we write h(xt) := (h(xt, ct,0)

>, . . . , h(xt, ct,M−1)
>)>. The covari-

ance Σmt is formed from the individual measurement covariances,

Σmt =


Σmt,0 0 · · · 0

0 Σmt,1
. . .

...
...

. 0
0 · · · 0 Σmt,M−1

 . (5)

(a) Determine the analytic Jacobians of the state-transition function g(xt,ut) and
the observation function h(xt) for the robot pose ξ and landmark positions lj.

(b) Obtain the code sample and data for this part of the exercise from the course
webpage. The archive contains three folders: data, matlab, plots. Implement
EKF prediction and correction to localize the robot and map the landmarks by
finalizing the code in the files prediction_step.m and correction_step.m.

(c) Run your code and report the final robot pose and landmark position esti-
mates after processing the whole dataset. Visualize your final result using the
provided plotting functions. Plot the current state estimate in each time step
into a png image and generate a video from the result sequence using avconv.

Exercise 4.2: Direct Visual SLAM, Pose Graph Optimization

In this exercise, you will implement a direct RGB-SLAM approach using direct
image alignment and pose graph optimization.

(a) Extract the exercise archive to obtain the provided code. The archive contains
code for direct image alignment as implemented in Exercise 3.2. Download
the fr2 desk sequence from the TUM RGB-D benchmark from the following
website: https://vision.in.tum.de/data/datasets/rgbd-dataset/download The
file formats are described here: https://vision.in.tum.de/data/datasets/rgbd-
dataset/file formats

Note: Convert the RGB images to floating point grayscale images before pro-
cessing them. The depth images represent depth values by 16-bit integer values
and need to be scaled by a factor of 1/5000 to obtain metric depth. Convert the
depth images to floating point metric values before further processing them.

Use the provided downscale function to downsample the images 4 times with
sampling factor 2. Display the images in original resolution and their down-
sampled versions.

2

(b) Test the solution code for Exercise 3.2 and verify that it works with the pro-
vided data from Ex. 3.2. The target result is specified in Ex. 3.2.

(c) Implement keyframe-based camera tracking through direct image alignment.
You can process the RGB-D images only up to a downsampled size in the
image pyramid to make the image alignment faster. Choose thresholds on the
rotational and translational distance to create new keyframes, when the image
overlap gets too small for camera tracking. Process the complete sequence and
evaluate the relative pose error (RPE) using the provided evaluation tool in
the TUM RGB-D benchmark (https://vision.in.tum.de/data/datasets/rgbd-
dataset/tools). Plot the resulting trajectory using the absolute trajectory
error (ATE) tool.

(d) Implement pose-graph optimization for the keyframe poses using the Gauss-
Newton algorithm and left-multiplied increments on the poses. Create relative
pose constraints between keyframes that are in successive order through di-
rect image alignment. At the end of the trajectory, detect a loop closure
manually between a pair of keyframes and find their relative pose constraint
through direct image alignment. Evaluate the relative pose error (RPE)
and absolute trajectory error (ATE) using the provided evaluation tool in
the TUM RGB-D benchmark (https://vision.in.tum.de/data/datasets/rgbd-
dataset/tools). Plot the resulting trajectory using the absolute trajectory
error (ATE) tool. Compare your result with the direct visual odometry result
from the previous exercise part.

Submission instructions

A complete submission consists both of a PDF file with the solutions/answers to the
questions on the exercise sheet and a ZIP file containing the source code that you
used to solve the given problems. Note all names and matriculation numbers of your
team members in the PDF file. Make sure that your ZIP file contains all files neces-
sary to compile and run your code, but it should not contain any build files or bina-
ries. Please submit your solution via email to rob3dvis-ws17@vision.in.tum.de.

3

