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What We Will Cover Today

* Introduction to Visual SLAM

* Formulation of the SLAM Problem
* Full SLAM Posterior

 Bundle Adjustment (BA)

e Structure of the SLAM/BA Problem
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What is Visual SLAM?

e Visual simultaneous localization and mapping (VSLAM)...
e Tracks the pose of the camera in a map, and simultaneously

* Estimates the parameters of the environment map (f.e. reconstruct
the 3D positions of interest points in a common coordinate frame)

* Loop-closure: Revisiting a place allows for drift compensation
* How to detect a loop closure?
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What is Visual SLAM?

e Visual simultaneous localization and mapping (VSLAM)...
e Tracks the pose of the camera in a map, and simultaneously

* Estimates the parameters of the environment map (f.e. reconstruct
the 3D positions of interest points in a common coordinate frame)

* Loop-closure: Revisiting a place allows for drift compensation
* How to detect a loop closure?

* Global vs. local optimization methods
* Global: bundle adjustment, pose-graph optimization, etc.

* Local: incremental tracking-and-mapping approaches, visual
odometry with local maps. Often designed for real-time.

* Hybrids: Real-time local SLAM + global optimization in a slower
parallel process (f.e. LSD-SLAM)

Robotic 3D Vision 4 Prof. Dr. Jorg Stlickler, Computer Vision Group, TUM



Visual SLAM with RGB-D Cameras

Dense Visual SLAM
for RGB-D Cameras

Christian Kerl, Jurgen Sturm,
Daniel Cremers

Computer Vision and Pattern Recognition Group
Department of Computer Science
Technical University of Munich
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RGB-D SLAM by Map Deformation

ElasticFusion: Dense SLAM Without A Pose Graph

Thomas Whelan, Stefan Leutenegger, Renato Salas-Moreno, Ben Glocker, Andrew Davison

Imperial College London




Visual SLAM using Bundle Adjustment

W Universidad
181  Zaragoza

o ¥ Instituto Universitario de Investigacion
°\ 'gs‘i;f’s en Ingenieria de Aragén
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ORB-SLAM2: an Open-Source SLAM System
for Monocular, Stereo and RGB-D Cameras

Raul Mur-Artal and Juan D. Tardds

raulmur@unizar.es tardos@unizar.es
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VO vs. VSLAM

VO

w/o local
map

VO

with local
map
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Structure from Motion

e Structure from Motion (SfM) denotes the joint estimation of
e Structure, i.e. 3D reconstruction, and
* Motion, i.e. 6-DoF camera poses,
from a collection (i.e. unordered set) of images

* Typical approach: keypoint matching and bundle adjustment

Robotic 3D Vision 9 Prof. Dr. Jorg Stlickler, Computer Vision Group, TUM



Structure from Motion

.
S

Agarwal et al., Building Rome in a Day, ICCV 2009, ,,Dubrovnik” image set
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VSLAM vs. SfM

SfM
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Why is SLAM difficult?

* Chicken-or-egg problem

* Camera trajectory
and map are
unknown and need
to be estimated
from observations

* Accurate
localization requires
an accurate map

* Accurate mapping
requires accurate
localization

Robotic 3D Vision
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Why is SLAM difficult?

* Correspondences
between observations and
the map are unknown

correspondence

* Wrong correspondences '7
can lead to divergence of

trajectory/map estimates
observation
£

* Important to model
uncertainties of
observations and
estimates in a probabilistic
formulation of the SLAM
problem

pose
uncertainty
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Definition of Visual SLAM

* Visual SLAM is the process of simultaneously estimating the egomotion of an
object and the environment map using only inputs from visual sensors on the
object and control inputs

* Inputs: images at discrete time steps 7,
* Monocular case: Set of images oy = {Io? e ,It}
* Stereo case: Left/right images I, = {Ié, . ?Ié} Iy, ={1),..., I]}
* RGB-D case: Color/depth images [y, = {Iy,.... I;} Zo+={Zo,..., 2}

* Robotics: control inputs /.,

*  Output:

« Camera pose estimates T';, € SE(3) in world reference frame.
For convenience, we also write £, = &€ (T)

* Environment map M
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Map Observations in Visual SLAM

* With Y, we denote observations of the environment map in image /;, f.e.
* Indirect point-based method: Y; = {ym, e 7Yt,N} (2D or 3D image points)
* Direct RGB-D method: Y; = {I;, Z;} (all image pixels)

* Involves data association to map elements M = {mq,...,mg}
* We denote correspondencesby ¢;; =7, 1 <i< N1 <3538
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Probabilistic Formulation of Visual SLAM

e SLAM posterior probability: p(&,.,, M | Yo, Ur,)

e Observation likelihood: p(Ye | &, M)

e State-transition probability: P (’St &, Ut)
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SLAM Graph Optimization

* Joint optimization for poses and map elements from image
observations of map elements

 Common map element
observations induce \,/4
constraints between "\
the poses

 Map elements correlate
with each others through
the common poses that
observe them

* No temporal sequence: Bundle Adjustment
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Probabilistic Formulation

SLAM posterior: p(&o., M | Yo, Ui, cou)
Observation likelihood:

p (Y | .M, c;)=p(Y; | E.me,)
p(th | £tamct) — HZP(Yt,Z | €t7mct,z~)

State-transition probability:
p (ft | §i1: Ut)
SLAM posterior can be factorized:
P (&, 14, C ) =np(Y; | &;. "”'1-@) P&y M | Yoie—1, Urt. CU:t—l)
=np(Y: | &,me) p (&’t | &, 4. U) P (fo-r—l- M | Yoi_1, Ul:t—l)
p(&y) p(M) Hp me,) p(& | &1 U)
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Factor Graph

e Factor graph representation of the full SLAM posterior
P (g[l:tr J[ | }/E}:fr (/’let_- CUZIL.)
= p(&) p(M) [ p (Ve | &.me,) p (& 1 €21, Ur)
t
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Explicit Model

 N¢noisy 2D point observation
of 3D landmarks in each image,
known data association m,,,

Yti = h(&’ mt,ct,i) =+ 5t =T (T(gt)_lmt;@t,i) + 515,1'

G~ N (0.5, B
L

* No control inputs
 Gaussian prior on pose &, ~ N (€. 3,)

e Uniform prior on landmarks
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Full SLAM Optimization as Energy Minimization

* Optimize negative log posterior probability (MAP estimation)

B M) = 5 (6,269 55k (602 €)
S S (= bl me )T S (v — hiE e, )
7=0 1=1

 Non-linear least squares!! We know how to optimize this..

* Remark: noisy state transitions based on control inputs add
further residuals between subsequent poses
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Full SLAM Optimization as Energy Minimization

[ &0
e Let‘s define the residuals on the full state vector :
() = & © € x| &
r;jz(x) = Vi — (& Inct,?;) :
\ ms /

e Stack the residuals in a vector-valued function and collect the
residual covariances on the diagonal blocks of a square matrix

r'(x) (S5 0 - 0 )
r) 4 (X) -1 :
r(x) — U"l. W — 0 Zyo,l :
: : .0

ry v, (X) \ 0 0 3

: : 1
* Rewrite error function as E(x) = §r(x)TWr(X)
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Recap: Gauss-Newton Method

* Idea: Approximate Newton’s method to minimize E(x)
e Approximate E(x) through linearization of residuals

E(x) = %}"(X)TW’E(X)

1
=5 (r(xp) + Jpe (x - xp)) W(e(xp) + 35 (x =xi)) Jpi= Var(x)],_y,
1 i
— —r(x;) "Wr(xp) + r(xp) W (x —x5) + = (x — x5) | JTWI, (x — x5)
=b =H,

* Find root of VXE(X) = b, +(x— x:) H, using Newton’s method, i.e.
ViE(x) =0 iff x = x, — H; 'by,

* Pros:

* Faster convergence (approx. quadratic convergence rate)
e (Cons:

* Divergence if too far from local optimum (H not positive definite)
e Solution quality depends on initial guess

Robotic 3D Vision 23 Prof. Dr. Jorg Stlickler, Computer Vision Group, TUM



Structure of the Bundle Adjustment Problem

b, and H; sum terms from individual residuals:

t N,
bgb—bU—l—ZZbTi: .]0 Mo er (x, +ZZ J” (%)

7=0 =1 =

t 4.'

Y - ) g(JzHZij(J?)Tz;:,ﬁ )
7=0 i=1

7=0 i=1 =0 i

e What is the structure of these terms?
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Structure of the Bundle Adjustment Problem

&o £ my mg

T | e Bl (x) B
' £T mer,i

Y Bl 5. EHCON

t N,
by - +Z;Z b, +1 - =y D) dense vector
7=0 i=1
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Structure of the Bundle Adjustment Problem

&o £y mg

10 | Sl ) B
' €’r M, ;

I = rri0a) [l

k

7=0 =1

ST I LR B I +i§: H - H::q # H,

Diagonal, typically S > ¢

t N, t N;
He = H) + Y0 HP = (1) 206 (30) + 303 (7)) 5L (07)
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Example Hessian of a BA Problem

r = w1 | Jj

Image source: Manolis Lourakis (CC BY 3.0)
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Exploiting the Sparse Structure

* l|dea:
Apply the Schur complement to solve the system in a partitioned way

oo = (fe fl)(2) ()

mp Axe = — (Hee — HEer_nlmHmE)_l (be — HemH 1 bim)

e Ay = —Hppn (b + Himg Axe)

* Isthis any better?
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Exploiting the Sparse Structure

* What is the structure of the two sub-problems ?

Axe = — (Hee — HemHp o Hime) ™ (be — HemHyplh by

* Poses:

S S
Hee — HemH, Hing = Hee = > He H' L Hop be — HemH b = be — Y Hew Hy', bi,
J=1

J=1

Reduced pose Hessian
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Exploiting the Sparse Structure

 What is the structure of the two sub-problems ?

e Poses: Ax¢=— (Hge — HemHyl Hie) ™' (be — HeHyl by

S / l

Hee — Y Hew Hy'\, H be — Z Hew, H' L, b

AR

H 0§ —p

3 &
Poses that observe landmark j
S S
Hee - E = be - Z
I_If;'rnJ H;li m; HmJE Hﬁm_, Hr;lj m; bmj
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Exploiting the Sparse Structure

 What is the structure of the two sub-problems ?

* Landmarks: Ax, = -H,! (by + HueAxe)

=y Axm, = —Hy L (bm, + HmeAxe)

[/

--(”I. )

* Landmark-wise solution
* Comparably small matrix operations
* Only involves poses that observe the landmark
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Exploiting the Sparse Structure

Image source: Manolis Lourakis (CC BY 3.0)
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Exploiting the Sparse Structure

Camera on a moving vehicle Flickr image search ,,Dubrovnik”
(6375 images) (4585 images)

* Reduced pose Hessian can still have sparse structure

 However: For many camera poses with many shared observations, the
inversion of the reduced pose Hessian is still computationally expensive!

* Exploit further structure, e.g., using variable reordering or hierarchical
decomposition

Image from Agarwal et al., ICCV 2009
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Effect of Loop-Closures on the Hessian

&2

'3 m3

my

| S,

§;

Band matrix &

Robotic 3D Vision 34 Prof. Dr. Jorg Stlickler, Computer Vision Group, TUM



Effect of Loop-Closures on the Hessian

&2
my
ms °
e 3

4
.

Not band matrix: costlier to solve £o
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Further Considerations

e Use matrix decompositions (f.e. Cholesky) to perform inversions

* Levenberg-Marquardt optimization improves basin of
convergence

* Heavier-tail distributions / robust norms on the residuals can be
implemented using Iteratively Reweighted Least Squares

* Twists are also a suitable pose parametrization for bundle
adjustment: optimize increments on the twists

* Many further tricks to improve convergence/robustness/run-time
efficiency, f.e.:
* Preconditioning
* Hierarchical optimization
* Variable reordering
* Delayed relinearization
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Lessons Learned Today

 SLAM is a chicken-or-egg problem:
* Localization requires map
* Mapping requires localization

* Unknown association of measurements to map elements

* Bundle Adjustment has a sparse structure that can be exploited
for efficient optimization

* Reduction of BA to pose optimization problem through
marginalization of landmarks (using the Schur complement)

* Loop closure constraints make SLAM optimization problem less
efficient to solve (but reduce drift!)
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Further Reading

* Probabilistic Robotics textbook

Probabilistic Robotics,
S. Thrun, W. Burgard, D. Fox,

XN MIT Press, 2005

LN
o fel

% *Probabilistic

ROBOTICS

SEBASTIAN THRUN
WOLFRAM BURGARD
DIETER FOX

* Triggs et al., Bundle Adjustment — A Modern Synthesis, 2002
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Thanks for your attention!
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