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What We Will Cover Today

* Direct Sparse Odometry

* Overview on Visual Odometry and SLAM
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Recap: Direct Sparse Odometry (DSO)
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Recap: DSO Algorithm Overview
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Brightness Constancy Assumption Revisited

 Camera images include vignetting effects and non-linear camera
response function

* |dea: invert vignetting and camera response function using a
known calibration

* Perform direct image alignment on irradiance images:

G—l
I'(y) = tB(y) = S
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Brightness Constancy Assumption Revisited
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e Automatic exposure and gain adjustment needed in realistic
environments

* Add exposure and affine gain parameters explicitly to objective
function:

1= (Lw(y, & Zi(y))) — bs) — 222 (], (y) — by)
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Tracking on Keyframe

* Direct image alignment of current
frame to most recent keyframe

¢" = argmin —log(p(€)) — >y eq, logp(r(y, <) | €)

* Photometric residuals with photometric calibration

1= (Lw(y:& Z1(y))) = b2) — 2RO (11 (y) — bi)

* Optimized parameters C now include photometric calibration
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Tracking on Keyframe

e Residual distribution

E(¢) = ZyEQZ wy [|7(y, )l 5

e Huber loss on residuals

* Additional gradient
dependent weight

2
C
Wy =
Yo 2+ IVLy);

* Solved using iteratively
reweighted least squares

Robotic 3D Vision

- Normal distribution
- Laplace distribution
- Student-t distribution

------------ Huber-loss for § =1
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Fixed-Lag Smoothing

* Optimize direct
image alignment
error function

* Optimize in a recent
window for
* keyframe poses and

photometric
calibration

* inverse depth of
sparse set of active
points

* Pose in SE(3)

* Marginalization of
old variables

Robotic 3D Vision

Ephoto = Z Z z Epj

1e€F peP; jecobs(p)
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Pt4: dp,

Epyu3
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Depth Estimation

* Optimize inverse depth of a set of NV, points in all keyframes
in bundle adjustment window

* |Initialization of inverse depth of new points by fusion of short-

baseline stereo comparisons from subsequent frames (similar
to LSD-SLAM)
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Depth Estimation

e Candidate point selection
* Region-adaptive gradient magnitude threshold in 32x32 gridcells

* Adaptive block size d to subdivide image into dxd blocks, select
pixel with largest gradient magnitude above adaptive cell

threshold
* Adapt block size to obtain Np pixels in each keyframe
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Keyframe Selection

e Several criteria to decide when to create new keyframe

* Mean square optical flow of points in latest keyframe towards
current frame during tracking

f=0GXilp-pI?

 Mean flow without rotation (translations cause occlusion
effects, despite low f)

N =

e Relative brightness factor between keyframe and current frame
a = |log(e®~%t;t; )|

e Threshold linear combination of criteria
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Keyframe Selection
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Structure of the Hessian

M pose (diag)

M pose-geo

M cco (diag)

geo (off-diag)

* DSO neglects spatial correlations of depth estimates in image
* Hessian block on depths is diagonal

Robotic 3D Vision
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Marginalization

* Goal of marginalization is

* to keep information of old poses and depths as prior without
relinearizing and updating old variables

* to maintain the structure of the Hessian (no fill-in for depths!)

* Marginalization of a keyframe proceeds by

* First marginalize all points hosted in the keyframe before the
keyframe pose

* Marginalize points without observations in last two keyframes

* Drop observations of points from other keyframes in the
marginalized keyframe to keep sparsity of Hessian
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Recap: Gauss-Newton Method

* Approximate Newton’s method to minimize E(x)
e Approximate E(x) through linearization of residuals

E(x) = %}"(X)TW’E(X)

1
=5 (r(xp) +J5 (x = xz)) " W (x(x) + Jp (x — x3.)) Jp = Vir(X) |4y,
1 1
— —r(x;) "Wr(xp) + r(xp) W (x —x5) + = (x — x5) | JTWI, (x — x5)
2 ~ ~ o 2 Ne—
::b;— =Hj,

* Find root of VXE(X) = b, +(x— x:) H, using Newton’s method, i.e.
ViE(x) =0 iff x = x, — H; 'by,

* Pros:

* Faster convergence (approx. quadratic convergence rate)
e (Cons:

* Divergence if too far from local optimum (H not positive definite)
e Solution quality depends on initial guess
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Marginalization

More formally, consider GN method for error function E(x)
VXE(X) =0 iff x =x — H;lbk_

Split into variables X, to keep and X g to marginalize
H,, H,s Ax, \ [ ba
Hgo Hpgg Axg ) bgs

Applying the Schur complement yields
Haa — Haa — HozBHgngBoz

AN

by = b, — HygHy b
Add as additional prior to GN optimization
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Marginalization

e Several criteria to decide when to marginalize a keyframe
* Always keep the latest two keyframes
* Keyframes with less than 5% visible points are marginalized

* If more than /N keyframes, marginalize keyframe which
maximizes

s(I;) =/d(i,1) > (d(i,5) +e)"

j€[3,n]\{i}/

translation distance small constant
between frame i and j
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Comparison of Direct SLAM Methods

+ RGB-D cameras

+ global consistency

camera pose tracking
towards keyframe

+ depth from sensor

tracking-only &
pose graph optimization

+ local accuracy

Robotic 3D Vision

+ monocular cameras
+ stereo cameras

+ global consistency

camera pose tracking
towards keyframe

+ depth from stereo
comparisons & filtering

tracking-and-mapping &
pose graph optimization

+ local accuracy

+ monocular cameras
+ stereo cameras

- no global consistency

camera pose tracking
towards keyframe

++ depth optimization
using photometric
residuals in local
keyframe window

tracking-and-mapping &
direct sparse bundle
adjustment in local
keyframe window with
marginalization

++ local accuracy
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VO / VSLAM Overview

e Lecture blocks so far
* Image formation and multiple view geometry
* Probabilistic state estimation
* Visual and visual-inertial odometry
* Visual SLAM

e OQOutlook
* 3D object detection and tracking
e Dense reconstruction and map representations
* Introduction to non-rigid reconstruction
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Probabilistic State Estimation

* Probabilistic formulation of visual odometry and SLAM
algorithms as inference in hidden Markov models

e Observation model p(Yt‘Xo:t,Uo:t,YO:t_l): p(Yt‘Xt)

e State-transition model p(Xt‘XoH,Uo:t):
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Probabilistic State Estimation

* Filtering: recursive estimation of most recent state (f.e. most
recent camera pose)

* Recursive Bayesian filter
e (Extended) Kalman filter

e Particle filter

Predict: p()(t | yOZt_l,UOI):J‘ p(Xt | Xt_liut)p(xt—l | yO:t—l’uO:t—l)dXt—l

observation action
Yi U,

p(yt | Xt)p(xt | yO:t—l’UOZt)
(Ve | X)P(X, | Yoras Uge JIX,

Robotic 3D Vision 22 Prof. Dr. Jorg Stlickler, Computer Vision Group, TUM

Correct: p(thyo,...,yt):j.p



Probabilistic State Estimation

* Full state posterior estimation

* @Gaussian noise models, non-linear models leads to non-linear
least squares

* Gauss-Newton method, typically offline
e Other noise models: Iteratively reweighted least squares

<) [Tobxx..0.)

t
p(xo:t‘ulzt’YO:t) = p(XO Hnr p(YT
7=0

!

arg min, F/(x) =

ir(x) ' Wr(x)
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Probabilistic State Estimation

* Fixed-lag smoothing:
* Inference of a window of recent states
e Marginalization of remaining states

* Trade-off between recursive filtering (faster) and full state
posterior estimation (more accurate)

Many landmarks © Keyframe pose
@ Non-keyframe pose

{1 Speed/bias
N Node(s) to be
marginalized

Bl Many keypoint
measurements

B IMU terms

Image source: Leutenegger et al., IJRR 2015

Robotic 3D Vision 24 Prof. Dr. Jorg Stlickler, Computer Vision Group, TUM



State Estimation Approaches

Fixed-Lag Smoothing Full State Posterior
Estimation

Recursive Bayesian Optimize window of Full posterior
filtering of the most states through non-linear optimization of all states
recent state (e.g. Kalman  optimization and through non-linear least
Filter) marginalization of old squares

states
- Single linearization + Relinearize (in window) + Relinearize
- Accumulation of - Accumulation of + Sparse Matrices
linearization errors linearization errors

- Gaussian approximation - Gaussian approximation + Highest Accuracy
of marginalized states of marginalized states

+ Faster + Fast + Slow
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Visual Odometry vs. SLAM

Estimate motion of object from Estimation motion of object and

measurements of visual sensor on map of environment from

the object measurements of visual sensor on
the object

Real-time requirements Real-time tracking, lower frame-rate
loop closing and global optimization

Local consistency, drift Local and/or global consistency

Map/3D reconstruction as a side- Concurrent accurate map

product estimation/3D reconstruction
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Indirect vs. Direct Methods

Indirect

Input images

\

Direct

I

7~

Extract and match
keypoints (SIFT,BRIEF,...)

~~
g

Track: min. reprojection
error (point distances)

Map: estimate keypoint
parameters (f.e. 3D

coordinates)
.

7
-

Track: min. photometric/
geometric error pixel-wise

Map: estimate per-pixel
depth from
photoconsistency
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Motion Estimation from Point Correspondences

e 2D-to-2D
) ReprOJ error:

Tt 1 ZHYt% T Xz H2+ Hyt 12_7T(T§_1)—(i) :

* Linear algorlthm. 8-point

¢ 2D't°'3D N
* Reprojection error: E(T,) =Y |yt — 7(T:X;)||;
1=1
* Linear algorithm: DLT PnP T,
* 3D-to-3D

* Reprojection error: £ (T;™') Zth i — T 1X“

* Linear algorithm: Arun‘s method
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Motion Estimation for Camera Type

Correspondences Monocular Stereo RGB-D
2D-to-2D X X X
2D-to-3D X X X
3D-to-3D X X
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Keypoint Detection

* Desirable properties of keypoint detectors for visual odometry:

* high repeatability,

* localization accuracy,

* robustness,

* jnvariance,

e computational efficiency

Harris Corners

Image source: Svetlana Lazebnik

Robotic 3D Vision 30

Prof. Dr. Jorg Stiickler, Computer Vision Group, TUM



Keypoint Matching

L

* Desirable properties for VO:
* High recall
* Precision
* Robustness
 Computational efficiency
* One possible approach to keypoint matching: by descriptor

 Robustness: RANSAC

Robotic 3D Vision 31 Prof. Dr. Jorg Stlickler, Computer Vision Group, TUM



Keypoint Descriptors

* Desirable properties for VO: distinctiveness, robustness, invariance

e Extract signatures that describe local image regions, examples:
* Histograms over image gradients (SIFT)
* Histograms over Haar-wavelet responses (SURF)
e Binary patterns (BRIEF, BRISK, FREAK, etc.)
* Learning-based descriptors (f.e. Calonder et al., ECCV 2008)

e Rotation-invariance: Align with dominant orientation in local region

* Scale-invariance: Adapt described region extent to keypoint scale

- Xk oy
# K AN
g RPN
KX S o
SIFT gradie pooling BRIEF test ocatons

Image source: Svetlana Lazebnik / Calonder et al., ECCV 2010
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Direct Visual Odometry Pipeline

* Avoid manually designed
keypoint detection
and matching Input Images

* Instead: direct image
alignment

E(E) = / D) ~ T, )] d

 Warping requires depth _ _
Estimate Motion
RGB-D through Direct &5 %
* Fixed-baseline stereo Image Alignment i«

* Temporal stereo, tracking
and (local) mapping
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Probabilistic Direct Image Alighment

* Measurements are affected by noise
L (y) = L (m (T(§)Zi(y)y)) + €

* A convenient assumption is Gaussian noise

e ~N(0,07)

* |f we further assume that pixel measurements are stochastically independent, we can
formulate the a-posteriori probability

p(&| 11, I2) o< p(I; | &, 12)p(€)
) TIN (1 3) - L (7 (T(©) Z1(y)5)) 50.02)

yef
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Optimization Approach

* Optimize negative log-likelihood
— Product of exponentials becomes a summation over quadratic terms
— Normalizers are independent of the pose

E(¢) = Z T(yazﬁ) , stacked residuals:  F/(£) = r(&')TWI‘(ﬁ)

yeQl 91
r(y. &) =L (y) — L (7 (T(&)Z(y)y))

* Non-linear least squares problem can be efficiently optimized using standard
second-order tools (Gauss-Newton, Levenberg-Marquardt)
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Direct Visual Odometry

Direct RGB-D Odometry Direct Monocular Odometry

Dense depth from sensor Semi-dense depth estimated
concurrently from short-baseline
stereo comparisons and filtering

Only tracking of camera pose Alternating, interdependent camera
pose and depth map estimation

Track on keyframe Track/depth estimation on keyframe

Metric scale from measured depth No metric scale
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Monocular Direct Visual Odometry

e Estimate motion and depth concurrently

§

/T\

* Alternating optimization: Tracking and Mapping

Images from: Engel et al., ICCV 2013
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Semi-Dense Mapping

* Estimate inverse depth and variance at high gradient pixels
* Correspondence search along epipolar line (5-pixel intensity SSD)

e Kalman-filtering of depth map:
* Propagate depth map & variance from previous frame
* Update depth map & variance with new depth observations

Images from: Engel et al., ICCV 2013
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Visual-Inertial Fusion

* Vision and IMU are complementary!

Visual sensing Inertial sensing

+ Accurate at small to medium motion - Large relative uncertainty for low
acceleration/angular velocity

+ Rich information for other purposes

- Limited output rate (~100Hz) + High output rate (~1000Hz)

- Scale ambiguity for monocular camera + Scale directly observable

- Lack of robustness for rapid motion, + Independent of environmental
textureless areas, low illumination conditions

 Odometry using both sensor types is still prone to drift!
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Camera-IMU System

e Extrinsic calibration between camera(s) and IMU frame

Co
(camera)

) _ M ’;
C1 (camera) \]/ Skybotix VI-Sensor
B (I b

* Time synchronization

MU IIJI\III|I|II|II|IIlI||||||||||||Ii||||||||||||

| camera g7 # . .
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Tightly-Coupled Filter for Visual-Inertial Fusion

* Photoconsistency measurements of landmark patch projections

ROVIO: Robust Visual Inertial Odometry
Using a Direct EKF-Based Approach

http.//github.com/ethz-asl/rovio

Michael Bloesch, Sammy Omari, Marco Hutter, Roland Siegwart

< »

<0 2 ..
H m B Autonomous Systems Lab ETH:zurich




Indirect Fixed-Lag Smoothing Example

* OKVIS: Keyframe-based indirect fixed-lag smoothing VIO

OKVIS: Open Keyfram-based Visual-Inertial SLAM

A reference implementation of:

Stefan Leutenegger, Simon Lynen, Michael Bosse,
Roland Siegwart and Paul Timothy Furgale.
Keyframe-based visual-inertial odometry using
nonlinear optimization.

The International Journal of Robotics Research, 2015.




Direct Fixed-Lag Smoothing Example

* Direct Fixed-Lag Smoothing VIO

Direct Visual-Inertial
Odometry with Stereo

Cameras

Vladyslav Usenko, Jakob Engel, Jérg Stuckler
and Daniel Cremers

Computer Vision and Pattern Recognition Group .oy
Department of Computer Science L
Technical University of Munich




What is Visual SLAM?

e Visual simultaneous localization and mapping (VSLAM)...
e Tracks the pose of the camera in a map, and simultaneously

* Estimates the parameters of the environment map (f.e. reconstruct
the 3D positions of interest points in a common coordinate frame)

* Loop-closure: Revisiting a place allows for drift compensation
* How to detect a loop closure?

05 features

1505 fe:
P i

R S
o R
N i \ )
¥

N Image credit: Clemente et'al., RSS 2007
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Why is SLAM difficult?

* Chicken-or-egg problem

* Camera trajectory
and map are
unknown and need
to be estimated
from observations

* Accurate
localization requires
an accurate map

* Accurate mapping
requires accurate
localization

Robotic 3D Vision
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trajectory
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Why is SLAM difficult?

* Correspondences
between observations and
the map are unknown

correspondence

* Wrong correspondences '7
can lead to divergence of

trajectory/map estimates
observation
£

* Important to model
uncertainties of
observations and
estimates in a probabilistic
formulation of the SLAM
problem

pose
uncertainty
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Example Hessian of a BA Problem

r = w1 | Jj

Image source: Manolis Lourakis (CC BY 3.0)
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Exploiting the Sparse Structure

* l|dea:
Apply the Schur complement to solve the system in a partitioned way

oo = (fe fl)(2) ()

mp Axe = — (Hee — HEer_nlmHmE)_l (be — HemH 1 bim)

e Ay = —Hppn (b + Himg Axe)

* Isthis any better?
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Exploiting the Sparse Structure

 What is the structure of the two sub-problems ?

e Poses: Ax¢=— (Hge — HemHyl Hie) ™' (be — HeHyl by

S / l

Hee — Y Hew Hy'\, H be — Z Hew, H' L, b

AR

H 0§ —p

& &
Poses that observe landmark j
S S
Hee - E = be - Z
I_If;'rnJ H;li m; HmJE Hﬁm_, Hr;lj m; bmj
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Exploiting the Sparse Structure

Image source: Manolis Lourakis (CC BY 3.0)
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Effect of Loop-Closures on the Hessian

&2

'3 m3

my

| S,

§;

Band matrix &
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Effect of Loop-Closures on the Hessian

&2
my
ms °
e 3

4
.

Not band matrix: costlier to solve £o
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Loop Closing by Place Recognition

* |dea: use image retrieval techniques

* Popular approach for place recognition is to use bag-of-visual-
words based image retrieval in conjunction with geometric
verification (f.e. 8-point with RANSAC)

Images: Cummins and Newman, Highly Scalable Appearance-Only SLAM — FAB-MAP 2.0, RSS 2009
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Loop Closing is Difficult!

Perceptual Aliasing

Image credit: Juan D. Tardés
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Overview on SLAM Approaches from the
Lecture

Tracking-and- Fixed-Lag Pose Graph Bundle
Mapping Smoothing Optimization Adjustment

Indirect: Indirect: Indirect: Indirect:

- PTAM - MonoSLAM - ORB-SLAM 1 & 2 - ORB-SLAM 2

Direct: Direct: Direct:

- Semi-dense - Direct sparse - DVO-SLAM

monocular odometry - LSD-SLAM

visual odometry

No loop closing  Loop closing No loop Loop closing Loop closing
closing
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Thanks for your attention!
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