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What We Will Cover Today
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• Direct Sparse Odometry

• Overview on Visual Odometry and SLAM



Recap: Direct Sparse Odometry (DSO)
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Recap: DSO Algorithm Overview
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Brightness Constancy Assumption Revisited
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• Camera images include vignetting effects and non-linear camera
response function

• Idea: invert vignetting and camera response function using a 
known calibration

• Perform direct image alignment on irradiance images:



Brightness Constancy Assumption Revisited
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• Automatic exposure and gain adjustment needed in realistic
environments

• Add exposure and affine gain parameters explicitly to objective
function: 



Tracking on Keyframe
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• Direct image alignment of current
frame to most recent keyframe

• Photometric residuals with photometric calibration

• Optimized parameters now include photometric calibration



Tracking on Keyframe
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• Residual distribution

• Huber loss on residuals

• Additional gradient
dependent weight

• Solved using iteratively
reweighted least squares

Huber-loss for = 1

- Normal distribution
- Laplace distribution
- Student-t distribution
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Fixed-Lag Smoothing
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• Optimize direct
image alignment
error function

• Optimize in a recent
window for
• keyframe poses and 

photometric
calibration

• inverse depth of
sparse set of active
points

• Pose in SE(3)

• Marginalization of
old variables



Depth Estimation
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• Optimize inverse depth of a set of points in all keyframes
in bundle adjustment window

• Initialization of inverse depth of new points by fusion of short-
baseline stereo comparisons from subsequent frames (similar
to LSD-SLAM)



Depth Estimation
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• Candidate point selection

• Region-adaptive gradient magnitude threshold in 32x32 gridcells

• Adaptive block size d to subdivide image into dxd blocks, select
pixel with largest gradient magnitude above adaptive cell
threshold

• Adapt block size to obtain pixels in each keyframe



Keyframe Selection
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• Several criteria to decide when to create new keyframe

• Mean square optical flow of points in latest keyframe towards
current frame during tracking

• Mean flow without rotation (translations cause occlusion
effects, despite low f)

• Relative brightness factor between keyframe and current frame

• Threshold linear combination of criteria



Keyframe Selection
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• DSO neglects spatial correlations of depth estimates in image

• Hessian block on depths is diagonal

Structure of the Hessian
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Marginalization
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• Goal of marginalization is

• to keep information of old poses and depths as prior without
relinearizing and updating old variables

• to maintain the structure of the Hessian (no fill-in for depths!)

• Marginalization of a keyframe proceeds by

• First marginalize all points hosted in the keyframe before the
keyframe pose

• Marginalize points without observations in last two keyframes

• Drop observations of points from other keyframes in the
marginalized keyframe to keep sparsity of Hessian



Recap: Gauss-Newton Method
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• Approximate Newton’s method to minimize E(x)
• Approximate E(x) through linearization of residuals

• Find root of                                                          using Newton’s method, i.e.

• Pros:
• Faster convergence (approx. quadratic convergence rate)

• Cons:
• Divergence if too far from local optimum (H not positive definite)
• Solution quality depends on initial guess



Marginalization
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• More formally, consider GN method for error function E(x)

• Split into variables        to keep and        to marginalize

• Applying the Schur complement yields

• Add as additional prior to GN optimization



Marginalization
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• Several criteria to decide when to marginalize a keyframe

• Always keep the latest two keyframes

• Keyframes with less than 5% visible points are marginalized

• If more than keyframes, marginalize keyframe which
maximizes

translation distance
between frame i and j

small constant



Comparison of Direct SLAM Methods

Robotic 3D Vision Prof. Dr. Jörg Stückler, Computer Vision Group, TUM19

DVO-SLAM LSD-SLAM DSO

+ RGB-D cameras + monocular cameras
+ stereo cameras

+ monocular cameras
+ stereo cameras

+ global consistency + global consistency - no global consistency

camera pose tracking
towards keyframe

camera pose tracking
towards keyframe

camera pose tracking
towards keyframe

+ depth from sensor + depth from stereo
comparisons & filtering

++ depth optimization
using photometric
residuals in local
keyframe window

tracking-only &
pose graph optimization

tracking-and-mapping & 
pose graph optimization

tracking-and-mapping &
direct sparse bundle
adjustment in local
keyframe window with
marginalization

+ local accuracy + local accuracy ++ local accuracy



VO / VSLAM Overview
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• Lecture blocks so far

• Image formation and multiple view geometry

• Probabilistic state estimation

• Visual and visual-inertial odometry

• Visual SLAM

• Outlook

• 3D object detection and tracking

• Dense reconstruction and map representations

• Introduction to non-rigid reconstruction



Probabilistic State Estimation
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• Probabilistic formulation of visual odometry and SLAM 
algorithms as inference in hidden Markov models

• Observation model

• State-transition model
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Probabilistic State Estimation
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• Filtering: recursive estimation of most recent state (f.e. most 
recent camera pose)

• Recursive Bayesian filter

• (Extended) Kalman filter

• Particle filter
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Probabilistic State Estimation
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• Full state posterior estimation

• Gaussian noise models, non-linear models leads to non-linear 
least squares

• Gauss-Newton method, typically offline

• Other noise models: Iteratively reweighted least squares
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Probabilistic State Estimation
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• Fixed-lag smoothing:

• Inference of a window of recent states

• Marginalization of remaining states

• Trade-off between recursive filtering (faster) and full state 
posterior estimation (more accurate)

Image source: Leutenegger et al., IJRR 2015



State Estimation Approaches
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Filtering Fixed-Lag Smoothing Full State Posterior
Estimation

Recursive Bayesian
filtering of the most
recent state (e.g. Kalman 
Filter)

Optimize window of
states through non-linear 
optimization and 
marginalization of old
states

Full posterior
optimization of all states
through non-linear least 
squares

- Single linearization + Relinearize (in window) + Relinearize

- Accumulation of
linearization errors

- Accumulation of
linearization errors

+ Sparse Matrices

- Gaussian approximation
of marginalized states

- Gaussian approximation
of marginalized states

+ Highest Accuracy

+ Faster + Fast + Slow



Visual Odometry vs. SLAM
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Visual Odometry Visual SLAM

Estimate motion of object from
measurements of visual sensor on 
the object

Estimation motion of object and 
map of environment from
measurements of visual sensor on 
the object

Real-time requirements Real-time tracking, lower frame-rate 
loop closing and global optimization

Local consistency, drift Local and/or global consistency

Map/3D reconstruction as a side-
product

Concurrent accurate map
estimation/3D reconstruction



Indirect vs. Direct Methods
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Indirect Direct

Input images Input images

Track: min. reprojection
error (point distances)

Map: estimate keypoint
parameters (f.e. 3D 
coordinates)

Track: min. photometric/ 
geometric error pixel-wise

Map: estimate per-pixel 
depth from
photoconsistency

Extract and match
keypoints (SIFT,BRIEF,…)



• 2D-to-2D
• Reproj. error:

• Linear algorithm: 8-point

• 2D-to-3D
• Reprojection error:

• Linear algorithm: DLT PnP

• 3D-to-3D
• Reprojection error:

• Linear algorithm: Arun‘s method

Motion Estimation from Point Correspondences

Robotic 3D Vision Prof. Dr. Jörg Stückler, Computer Vision Group, TUM28



Motion Estimation for Camera Type

Robotic 3D Vision

Correspondences Monocular Stereo RGB-D

2D-to-2D X X X

2D-to-3D X X X

3D-to-3D X X
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Keypoint Detection
• Desirable properties of keypoint detectors for visual odometry:

• high repeatability, 

• localization accuracy, 

• robustness, 

• invariance, 

• computational efficiency

Robotic 3D Vision

Image source: Svetlana Lazebnik

Harris Corners DoG (SIFT) Blobs
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Keypoint Matching

• Desirable properties for VO:

• High recall

• Precision

• Robustness

• Computational efficiency

• One possible approach to keypoint matching: by descriptor

• Robustness: RANSAC
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Keypoint Descriptors
• Desirable properties for VO: distinctiveness, robustness, invariance

• Extract signatures that describe local image regions, examples:
• Histograms over image gradients (SIFT)

• Histograms over Haar-wavelet responses (SURF)

• Binary patterns (BRIEF, BRISK, FREAK, etc.)

• Learning-based descriptors (f.e. Calonder et al., ECCV 2008)

• Rotation-invariance: Align with dominant orientation in local region

• Scale-invariance: Adapt described region extent to keypoint scale

Robotic 3D Vision

SIFT gradient pooling BRIEF test locations

Image source: Svetlana Lazebnik / Calonder et al., ECCV 2010
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Direct Visual Odometry Pipeline

Robotic 3D Vision

• Avoid manually designed
keypoint detection
and matching

• Instead: direct image
alignment

• Warping requires depth
• RGB-D

• Fixed-baseline stereo

• Temporal stereo, tracking
and (local) mapping
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• Measurements are affected by noise

• A convenient assumption is Gaussian noise

• If we further assume that pixel measurements are stochastically independent, we can
formulate the a-posteriori probability

Probabilistic Direct Image Alignment
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• Optimize negative log-likelihood

 Product of exponentials becomes a summation over quadratic terms

 Normalizers are independent of the pose

, stacked residuals:

• Non-linear least squares problem can be efficiently optimized using standard
second-order tools (Gauss-Newton, Levenberg-Marquardt)

Optimization Approach

Robotic 3D Vision Prof. Dr. Jörg Stückler, Computer Vision Group, TUM35



Direct Visual Odometry
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Direct RGB-D Odometry Direct Monocular Odometry

Dense depth from sensor Semi-dense depth estimated
concurrently from short-baseline
stereo comparisons and filtering

Only tracking of camera pose Alternating, interdependent camera
pose and depth map estimation

Track on keyframe Track/depth estimation on keyframe

Metric scale from measured depth No metric scale



Monocular Direct Visual Odometry

Robotic 3D Vision

• Estimate motion and depth concurrently

• Alternating optimization: Tracking and Mapping

Images from: Engel et al., ICCV 2013
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Semi-Dense Mapping

Robotic 3D Vision

• Estimate inverse depth and variance at high gradient pixels

• Correspondence search along epipolar line (5-pixel intensity SSD)

• Kalman-filtering of depth map:

• Propagate depth map & variance from previous frame

• Update depth map & variance with new depth observations
Images from: Engel et al., ICCV 2013
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Visual-Inertial Fusion
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• Vision and IMU are complementary!

• Odometry using both sensor types is still prone to drift!

Visual sensing Inertial sensing

+ Accurate at small to medium motion - Large relative uncertainty for low
acceleration/angular velocity

+ Rich information for other purposes

- Limited output rate (~100Hz) + High output rate (~1000Hz)

- Scale ambiguity for monocular camera + Scale directly observable

- Lack of robustness for rapid motion, 
textureless areas, low illumination

+ Independent of environmental 
conditions



Camera-IMU System
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• Extrinsic calibration between camera(s) and IMU frame

• Time synchronization

WB (IMU)

C1 (camera)

C0 
(camera)

Skybotix VI-Sensor



Tightly-Coupled Filter for Visual-Inertial Fusion
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• Photoconsistency measurements of landmark patch projections



Indirect Fixed-Lag Smoothing Example

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 42

• OKVIS: Keyframe-based indirect fixed-lag smoothing VIO



Direct Fixed-Lag Smoothing Example
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• Direct Fixed-Lag Smoothing VIO



What is Visual SLAM?
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• Visual simultaneous localization and mapping (VSLAM)…

• Tracks the pose of the camera in a map, and simultaneously

• Estimates the parameters of the environment map (f.e. reconstruct 
the 3D positions of interest points in a common coordinate frame)

• Loop-closure: Revisiting a place allows for drift compensation

• How to detect a loop closure?

Image credit: Clemente et al., RSS 2007



Why is SLAM difficult?

Robotic 3D Vision

• Chicken-or-egg problem

• Camera trajectory 
and map are 
unknown and need 
to be estimated 
from observations

• Accurate 
localization requires 
an accurate map

• Accurate mapping 
requires accurate 
localization

camera
trajectory

map
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Why is SLAM difficult?

Robotic 3D Vision

• Correspondences
between observations and 
the map are unknown

• Wrong correspondences 
can lead to divergence of 
trajectory/map estimates

• Important to model 
uncertainties of 
observations and 
estimates in a probabilistic 
formulation of the SLAM 
problem

pose
uncertainty

observation

correspondence

map
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Example Hessian of a BA Problem

Robotic 3D Vision

Image source: Manolis Lourakis (CC BY 3.0)

Landmark
dimensions

Pose dimensions

(10 poses)

(982 landmarks)
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Exploiting the Sparse Structure

• Idea:
Apply the Schur complement to solve the system in a partitioned way

• Is this any better?
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Exploiting the Sparse Structure

• What is the structure of the two sub-problems ?

• Poses:

Robotic 3D Vision

Poses that observe landmark j
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Exploiting the Sparse Structure

Robotic 3D Vision

Image source: Manolis Lourakis (CC BY 3.0)
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Effect of Loop-Closures on the Hessian

Robotic 3D Vision

Band matrix
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Effect of Loop-Closures on the Hessian

Robotic 3D Vision

Not band matrix: costlier to solve

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM52



Loop Closing by Place Recognition

Robotic 3D Vision

• Idea: use image retrieval techniques

• Popular approach for place recognition is to use bag-of-visual-
words based image retrieval in conjunction with geometric 
verification (f.e. 8-point with RANSAC)

Images: Cummins and Newman, Highly Scalable Appearance-Only SLAM – FAB-MAP 2.0, RSS 2009
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Loop Closing is Difficult!

Robotic 3D Vision

Image credit: Juan D. Tardós

Perceptual Aliasing
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Overview on SLAM Approaches from the
Lecture
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Tracking-and-
Mapping

Filtering Fixed-Lag 
Smoothing

Pose Graph 
Optimization

Bundle 
Adjustment

Indirect:
- PTAM

Indirect:
- MonoSLAM

Indirect:
- ORB-SLAM 1 & 2

Indirect:
- ORB-SLAM 2

Direct:
- Semi-dense
monocular
visual odometry

Direct:
- Direct sparse
odometry

Direct:
- DVO-SLAM
- LSD-SLAM

No loop closing Loop closing No loop 
closing

Loop closing Loop closing
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Thanks for your attention!


