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What We Will Cover Today
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• Introduction to 3D object detection

• Challenges

• Object detection and pose estimation with local image features

• Affine transformations

• Homographies

• Correspondence grouping and robust alignment

• Hough transform



Object Detection and Recognition
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Slide adapted from S. Savarese



Object Detection and Recognition
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Slide adapted from S. Savarese

Detection: does this image contain a car and where is it?



Object Detection and Recognition
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Slide adapted from S. Savarese

Detection: which objects does this image contain and where are they?



Object Detection and Recognition
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Detection: instance segmentation



Object Detection and Recognition
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Slide adapted from S. Savarese

Detection: where are the objects in 3D?



Joint Detection and Reconstruction
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Slide adapted from S. Savarese

Detection: where are the objects in 3D?



3D Object Detection
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Image from pointclouds.org

Detection: where are the objects in 3D ?



3D Object Detection for Robotic Grasping
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Papazov et al., IJRR 2012, video from youtube/qlt1os_WJRs



Challenges in Object Detection
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Slide adapted from F. Li, A. Torralba

View-point variation



Challenges in Object Detection
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Image credit: J. Koenderink

Illumination variation



Challenges in Object Detection
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Scale
Slide adapted from F. Li, A. Torralba



Challenges in Object Detection
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Deformation



Challenges in Object Detection
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Slide adapted from F. Li and A. Torralba

Occlusions



Challenges in Object Detection
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Image: Kilmeny Niland, 1995
Slide adapted from S. Savarese

Background clutter



Challenges in Object Detection
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Slide adapted from F. Li and A. Torralba

Intra-class variation vs. specific object detection



3D Object Detection Pipelines
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• Local vs. global object description

Keypoint
extraction & 

matching

Geometric
correspondence

grouping

Instance 
segmentation

Segment 
description & 
recognition

Pose alignment

Pose refinement



Object Detection with Local Features
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• Find a consistent geometric configuration of local features 
(keypoints)

Keypoints e.g. SIFT

Image from D. Lowe



Object Detection with Local Features
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• Which transformations can we estimate, if we are only given 2D 
views on an object with 2D image locations of keypoints?

• Affine transformations

• Projective transformations (homography) 

Image from D. Lowe



2D Affine Transformations
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• 2D affine transformations approximate perspective projection of 
planar objects

• Can work well for (almost) planar objects and (almost) 
orthographic camera

Image from D. Lowe



2D Affine Transformations
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• 2D affine transformations approximate perspective projection of 
planar objects

• Parallel lines remain parallel

Image from D. Lowe
Image from A. Efros



2D Affine Transformations
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• Which basic transformations can we represent with affine 
transformations?

2D rotation 2D translation

2D shearing2D scaling



Estimating 2D Affine Transformations
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• Write constraints on affine transformation from multiple 2D 
point correspondences as

• Linear least squares estimation



Projective Transformations/Homographies
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• Under a pinhole projection model, images of points on a 3D 
plane taken from different views are related by a homography

due to scale ambiguity 

we can set

• Parallel lines in 3D do not
remain parallel in the image

• Straight lines are preserved

• Rectangle maps to 
quadrilateral

Image from A. Efros



Homography Example
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Manual reconstruction
by Martin Kemp, The
Science of ArtImage from A. Criminisi



Estimating Homographies
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• Each 2D point correspondence provides the constraints

• Constraints can be written as



Estimating Homographies
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• Leads to homogeneous set of linear equations

• Find norm 1 solution in nullspace of A as singular vector of A 
corresponding to smallest singular value



Monocular 3D Object Pose Estimation
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• If we have a 3D model of 
keypoints on the object available, 
we can use PnP algorithms (see 
Lec. 6) to determine 3D rotation 
and translation of the object from 
2D-to-3D keypoint matches

• How do we get the 3D model?

• Example: Render textured CAD
model from different viewpoints
and generate keypoint database
with 3D coordinates in object
coordinate frame 



3D Object Pose Estimation in RGB-D Images
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• With RGB-D images, we can also 
perform 3D-to-3D alignment of 
matched keypoints between 
model and image

• Alternatively to 2D image points in 
RGB images, 3D shape keypoints
and global shape descriptors of 
object segments have been 
proposed that can be extracted 
from the depth images

• Examples: FPFH, SHOT, Spin 
Images, CVFH, PPF… (details later)



Correspondence Grouping and Robust Alignment
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• If multiple objects are present in a scene, we need a process to group 
correspondences of each single object before alignment

• Keypoint matches can be erroneous, direct LS fitting not possible

• Approach 1: RANSAC (see Lec. 7)
• Sample minimal tuples of matches to 

perform alignment and determine LS 
fit to best inlier set

• Remove inliers and fit next object

• Approach 2: Generalized Hough Transform (this lecture)
• Each minimal tuple of matches needed for 

alignment votes in pose parameter space 
(using a discretization/histogram)

• Object poses correspond to maxima in pose 
parameter histogram with sufficient number 
of votes



Example: Line Fitting
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• Extra edge points (clutter), multiple models:
• Which points go with which line, if any?

• Only some parts of each line detected, and 
some parts are missing:
• How to find a line that bridges missing 

evidence?

• Noise in measured edge points, orientations:
• How to detect true underlying parameters?

Slide adapted from K. Grauman



Fitting Lines with the Hough Transform
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• Given points that belong to a line, what is the 
line?

• How many lines are there?

• Which points belong to which lines?

• Hough Transform is a voting technique that 
can be used to answer all of these questions.

• Main idea: 

• 1.  Record vote for each possible line on which 
each edge point lies

• 2.  Look for lines that get many votes

Slide adapted from K. Grauman



Fitting Lines with the Hough Transform
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Slide adapted from S. Seitz

Connection between image (x,y) and Hough (m,b) spaces

• A line in the image corresponds to a point in Hough space

• To go from image space to Hough space:
– given a set of points (x,y), find all (m,b) such that y = mx + b

x

y

m

b

m0

b0

image space Hough (parameter) space



Fitting Lines with the Hough Transform
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Slide adapted from S. Seitz

Connection between image (x,y) and Hough (m,b) spaces

• A line in the image corresponds to a point in Hough space

• To go from image space to Hough space:
– given a set of points (x,y), find all (m,b) such that y = mx + b

• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer:  the solutions of b = -x0m + y0

– this is a line in Hough space

x0

y0



Fitting Lines with the Hough Transform
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Slide adapted from K. Grauman

What are the line parameters for the line that contains both (x0, y0) and (x1, y1)?

• It is the intersection of the lines b = –x0m + y0 and b = –x1m + y1

x

y

m

b

image space Hough (parameter) space

x0

y0

b = –x1m + y1

(x0, y0)

(x1, y1)



Fitting Lines with the Hough Transform
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x

y

m

b

image space Hough (parameter) space

How can we use this to find the most likely parameters (m,b) for the most 
prominent line in the image space?

• Let each edge point in image space vote for a set of possible parameters in Hough 
space

• Accumulate votes in discrete set of bins; parameters with the most votes indicate 
line in image space



Polar Line Representation
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Slide adapted from K. Grauman

• Issues with usual (m,b) parameter space: can take on infinite values, 

undefined for vertical lines.

• Use polar representation of lines

• Point in image space  sinusoid segment in Hough space

: perpendicular distance 

from line to origin

: angle the perpendicular 

makes with the x-axis

dyx   sincos

d



[0,0]

d


x

y



Hough Transform Algorithm (for Lines)
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Slide adapted from K. Grauman

Using the polar parameterization:

Basic Hough transform algorithm

1. Initialize H[d, ]=0

2. for each edge point I[x,y] in the image

for  = [min to  max ]  // some quantization

H[d, ] += 1

3. Find the value(s) of (d, ) where H[d, ] is maximum

4. The detected line in the image is given by

H: accumulator array (votes)

d



Time complexity (in terms of number of votes per pt)?

dyx   sincos

 sincos yxd 

 sincos yxd 



Fitting Lines with the Hough Transform
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Slide adapted from K. Grauman

Showing longest segments found



Impact of Noise on the Hough Transform
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Slide adapted from K. Grauman

Image space
edge coordinates

Votes

x

y d



Impact of Noise on the Hough Transform
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Image space
edge coordinates

Votes

x

y d



Extensions
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Slide adapted from K. Grauman

Extension 1:  Use the image gradient

1. same

2. for each edge point I[x,y] in the image

 = gradient angle at (x,y)

H[d, ] += 1

3. same

4. same

(Reduces degrees of freedom)

 sincos yxd 



Extensions
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Slide adapted from K. Grauman

Extension 1

• Use the image gradient

Extension 2

• Give more votes for stronger edges (use magnitude of gradient)

Extension 3

• Change the sampling of (d, ) to give more/less resolution

Extension 4

• The same procedure can be used with circles, squares, or any other 
shape…



Generalized Hough Transform
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• Define a model shape by its boundary points and a reference 
point

(Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980)

x a

p1

θ

p2

θ

At each boundary point, 
compute displacement vector: 
r = a – pi

Store these vectors in a table 
indexed by gradient 
orientation θ

Offline procedure: 

Model shape

θ

θ

…

…

…

Slide adapted from K. Grauman



Generalized Hough Transform
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[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

Model shape

θ

θ

…

…

…

Slide adapted from K. Grauman

p1

θ
θ

For each edge point:

• Use its gradient orientation to index 
into stored table 

• Use retrieved r vectors to vote for 
reference point

Detection procedure: 
x

θ
θ

Novel image

θ

xx

xx



Generalized Hough Transform
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B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV 

Workshop on Statistical Learning in Computer Vision 2004
Slide adapted from K. Grauman

• Instead of indexing displacements by gradient orientation, 
index by “visual codeword”

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Hough Voting: Practical Tips
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• Minimize irrelevant tokens first (take edge points with significant 
gradient magnitude)

• Choose a good grid / discretization

• Too coarse: large votes obtained when too many different lines 
correspond to a single bucket

• Too fine: miss lines because some points that are not exactly 
collinear cast votes for different buckets

• Vote for neighbors, also (smoothing in accumulator array)

• Utilize direction of edge to reduce free parameters by 1

Slide adapted from K. Grauman



Hough Voting: 2D-to-2D Matching
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• Oriented local 2D keypoint matches cast votes for affine 
transformations (f.e. 2D translation, scale & 2D rotation)

Slide adapted from S. Lazebnik



Hough Voting: 3D-to-3D Matching
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• Oriented local 3D keypoint matches cast votes for Euclidean 
transformations (f.e. 3D translation & 3D rotation)

• Requires repeatable 
extraction of reference 
frame at each keypoint

• Can be difficult to 
obtain reliably

Images from F. Tombari
(F. Tombari and L. Stefano, Hough Voting for 3D Object Recognition 
under Occlusion and Clutter, 2012)



Hough Voting: Surfel-Pair Matching
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• Surfel pairs cast votes for Euclidean transformations (f.e. 3D 
translation & 3D rotation)

• Details see next lecture



Lessons Learned Today
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• Object detection is about localization and recognition of objects 
in images

• 3D object detection: 

• pose estimation of specific objects

• From 2D-to-2D keypoint correspondences to an object model we 
can estimate affine and projective transformations

• If we have 3D position of keypoints in a model available, we can 
apply PnP algorithms to estimate 6-DoF pose

• Generalized Hough transform as alternative to RANSAC for 
correspondence grouping and robust alignment
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Thanks for your attention!


