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What We Will Cover Today
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• 3D keypoint detectors and descriptors

• Global 3D object descriptors

• Surfel-pair matching

• Iterative closest points algorithm



Recap: 3D Object Detection Pipelines
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• Local vs. global object description

Keypoint
extraction & 

matching

Geometric
correspondence

grouping

Instance 
segmentation

Segment 
description & 
recognition

Pose alignment

Pose refinement



3D Object Detection with Local Keypoints
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• Detect and match a set of 
local keypoints between 
model and scene

• Locality of keypoints provides 
robustness against occlusions

• Local keypoints should be distinctive and repeatable, combined 
properties of detector and descriptor!

• Alignment for pose estimation:
• 3D-to-3D alignment

• Pose voting from keypoint match through local reference frames

Image from pointclouds.org



Training Objects with Local Features
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• Either
• Extract keypoints on 3D 

object models (f.e. CAD or 
scanned), or

• Render views on CAD 
models and extract 
keypoints for
rendered views

• For each object/view, store 
keypoints in an 
efficient search data
structure for the
descriptor metric
(e.g. kd-tree)



3D Keypoint Detectors
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• Strategy 1: Uniform spatial 
sampling

• Strategy 2: Detection of 
keypoints at maxima of 3D 
interest measures
• Intrinsic Shape Signatures (ISS) 

Detector, Zhong 2009

• Harris3D

• …

• Multi-scale vs. characteristic 
scale

• Extraction of a local reference 
frame

Image from Unnikrishnan and Hebert, 2008



Intrinsic Shape Signatures (ISS) Detector
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• Interest measure based on covariance of 
local point distribution

• Weights account for varying point density

• Compute eigenvalues of local covariance  

• Find local maxima of smallest eigenvalue 

• Constrain by thresholds on 
and                to find points with well 
conditioned eigen vector directions 

Image from F. TombariY. Zhong, Intrinsic shape signatures: A shape descriptor for 3D object recognition, 2009 



Local Reference Frame
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• Extract local reference frames from 
eigen vectors to align rotation-
variant descriptor

• 4 possible cases for right-handed 
frame

Image from F. TombariImage from Y. Zhong, 2009 



Local Reference Frame: Disambiguation
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• Disambiguate the 4 possible cases by quantifying the 
support of the directions

• Directions and opposite directions of eigenvectors:

• Choose x-axis according to 
strongest support

• z-direction analogously, y through 
Image from Y. Zhong, 2009



Recap: Structure Tensor

Eigenvalues and eigenvectors of H
• Define shifts with the smallest and largest change (E value)

• x+ = direction of largest increase in E. 

• + = amount of increase in direction x+

• x- = direction of smallest increase in E. 

• - = amount of increase in direction x-

x-

x+
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Slide adapted from Steve Seitz

„structure tensor“



Recap: Harris Operator

• “Harris operator” for corner detection

• The trace is the sum of the diagonals, i.e., trace(H) = h11 + h22

• Very similar to - but less expensive (no square root)

• Called the “Harris Corner Detector” or “Harris Operator”

• Lots of other detectors, this is one of the most popular
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Slide adapted from Steve Seitz



Harris3D
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• Replace image gradients with surface normals
W: 3D window, f.e. sphere

• Harris response:

• Lowe response: 

• Noble response: 

• Tomasi response: 

Image from S Gedikli and S Holzer



Harris5D
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• Can be extended to combined cornerness measure on color and 
geometry by stacking image gradients and normals

Image from S Gedikli and S Holzer



3D Keypoint Descriptors
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• Typical approach: Describe local distribution of points and/or 
surface normals

• Key questions:

• How to achieve rotation invariance?

• Description scale of local region?

• Popular descriptors:

• Fast Point Feature Histograms (FPFH)

• Signature of Histograms of Orientations (SHOT)

• 3D Shape Context (3DSC)

• …



Surfel-Pair Relations
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• Surfel : point p with normal n

• Features: geometric relations between two surfels

• Construct repeatable local coordinate frame between surfels

• Compute 4 features from constructed frame, normal and point 
coordinates

• Rotation-invariant features!
Image from R Rusu, Diss. 2009



Fast Point Feature Histogram (FPFH)
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• Describe local neighborhood 
of a point by histogram of 
surfel-pair relations

• Fast Point Feature Histogram
• Compute Simplified Point

Feature Histogram for
each point from surfel-pair 
relations between point and
local neighbors

• Accumulate SPFHs in
local point neighborhood 

• Rotation-invariant
Image from R Rusu, Diss. 2009

Distance between points



Fast Point Feature Histogram (FPFH)
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Images from R Rusu, Diss. 2009



Spin Images
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• Describe local point distribution at a keypoint by 2D projection of 
points on half-plane parallel to surface normal through keypoint

• Also rotation-invariant, 
but requires a stable normal

Images from A. Johnson, Diss 1997



Signature of Histograms of Orientations (SHOT)
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• Describe spatial distribution of relative surface
orientation around a keypoint

• Discretize spherical volume around keypoint

• Discretize spatial bins into angular bins

• For each neighboring point, determine spatial bin and the angular 
bin for the angle between its surface normal and the normal of the 
keypoint

• Align spherical grid with local reference frame to obtain rotation-
invariance

Images from F. Tombari



3D Object Detection with Global Features
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• Segment RGB-D image
into object candidates

• Classify segments using
global features extracted
on the segments

• Pose estimation by 
classifying view-point 
specific features +
refinement
• Simple approach: 

look-up of N
nearest neighbors 
in kd-tree



Training Objects with Global Features
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• Render views on CAD models

• Extract global features for
rendered views

• Store object indices with
global features in an 
efficient search data
structure for the
descriptor metric
(e.g. kd-tree)



3D Object Segmentation
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• Strategy 1: Plane-object (e.g. table-top) segmentation
• Find plane segments in 

3D point  cloud using RANSAC 
or Generalized Hough Transform

• Cluster remaining points into 
object candidates

• Strategy 2: Region-growing
• Grow regions until borders with high curvature (e.g. large smallest 

eigenvalue of local point covariance) or depth discontinuities

• Many more strategies such as supervoxels, RGB-D superpixels…

Images from D. Holz



Region-Growing Segmentation
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• Goal: segment scene into “smooth” regions

• What is smooth?

• Close-by points should have similar normal

• Prefiltering step: remove points with high curvature above a 
threshold

• Curvature measure: smallest eigenvalue of the covariance of a local 
point neighborhood

Image from D. Holz

e.g. 3x point sampling rate

e.g. cos 10°



Input: point cloud
Output: regions                , 
1. remove high curvature points from 
2. 
3. while              

if
choose random seed point               , 
add it to       and remove it from 

else
repeat

for each                if                                           

add        to        and remove it from 
until no new point could be added to

Region-Growing Segmentation Algorithm
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Global Object Description
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• Describe object shape by point/surface normal distribution 
within segment

• Examples:

• Viewpoint Feature Histograms (VFH)

• Cluster Viewpoint Feature Histograms (CVFH)

• …



Viewpoint Feature Histogram (VFH)
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• Extended FPFH for object 
segment: histogram over 
surfel-pair relations to 
segment centroid      and 
average normal 

• Add statistics on angles 
between point normals in 
segment and “central” 
view direction

• Central view direction: 
view direction to 
segment centroid, 

Images from R. Rusu 2009



Viewpoint Feature Histogram (VFH)
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• a

Images from R. Rusu 2009



Pose Estimation and Camera-Roll Histogram
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• Alignment of the centroids of model and scene segment 
yields 5-DoF object pose up to rotation around view 
direction

• Remaining degree of freedom obtained from camera-roll 
histogram:

• Project normals in scene cluster to plane orthogonal to central 
view direction

• Create camera-roll histogram of angles of projected normal in 
the plane

• Find rotation angles as peaks above some threshold in the 
cross power spectrum between scene and model CRH using 
the discrete Fourier transform 



Clustered Viewpoint Feature Histogram (CVFH)
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• Extension 1 (CVFH)
• Problem of VFH: segment centroid and average normal not robust 

to partial occlusions

• CVFH: 
• describes an object view by VFHs       of multiple part segments 

obtained through region growing

• The CVFH histogram                   of the i-th segment is formed from 
(45,45,45,45,128)-bin histograms over the variables 

• Additional shape distribution component (SDC) describes distance 
relations between segment centroids        and points in the segment, 
i.e. for a point                 :



Object Recognition with CVFH
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• For each object segment independently

• Perform region growing in the object segment and describe the 
part segments with a set of CVFHs 

• For each                find the N closest CVFH descriptors in the training 
set

• Among the matches select the N best matches according to the 
metric 

• Determine 6-DoF pose using CRH matching for the N best matches

• Refine pose estimates using Iterative Closest Points (ICP, later)

• Find best pose estimate by counting matching inliers based on 
distance threshold



Clustered Viewpoint Feature Histogram (CVFH)
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• Extension 2 (OUR-CVFH)

• Determine local reference frame at each centroid

• Describe spatial distribution of points in each segment by distance 
from centroid in the 8 octants of the local reference frame 



Surfel-Pair Matching
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• If we could identify a corresponding pair of surfels between 
scene and model, we could directly and uniquely infer the 6-DoF 
pose

Images from B. Drost et al., 2010



Surfel-Pair Matching
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• Align the reference points                and their normal 
with the x-axis in the world frame using             , 

• Align the secondary points                in a common plane parallel to 
the normal by a 1D rotation       around the normals

Images from B. Drost et al., 2010



Surfel-Pair Pose Voting
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• Match a scene surfel-pair                 to model pairs
according to quantized surfel-pair-relations in a hash look-up 
table

• Pair all surfels for scene and model description, respectively

Images from B. Drost et al., 2010



Surfel-Pair Pose Voting
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• Cast a vote for each model-pair and corresponding rotation angle    
that aligns scene and model pair

Images from B. Drost et al., 2010



Extracting Object Pose from Surfel-Pair Votes
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• Object pose could be extracted from maximum peak in Hough 
voting space for a single reference surfel

• Due to noise and occlusions pose from single surfel is not reliable

• Strategy: Find pose cluster with most votes from multiple 
reference surfels

Images from B. Drost et al., 2010



Efficient Surfel-Pair Voting

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 37

• can be split into 2 rotations that align the secondary points in 
the world x-y plane                                          , i.e.

Images from B. Drost et al., 2010



Surfel-Pair Matching Example
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Images from B. Drost et al., 2010

sampling rate \tau for reference surfels in scene and model



Pose Refinement
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• So far, local as well as global detection strategies provide only a 
coarse pose estimate

• Popular strategy for pose refinement: Iterative Closest Points

• Align scene measurements with model point cloud

Scene

Model

Images from pointclouds.org



Iterative Closest Points (ICP)
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• Ideally, if we knew the correspondences of points between scene 
and model, we could directly solve for the 3D-to-3D motion 
estimate

• How ?

• ICP: Iteratively and alternatingly estimate correspondences and 
pose alignment between point sets                         and

estimate
correspondences

align corresponding
points



ICP Alignment Objectives
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• Alignment objectives: point-point, point-plane, GICP

Images from Holz et al., 2015



Data Association for ICP
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• Closest-points data 
association

• Use efficient spatial 
search data structure 
such as kd-trees

• Popular metric: 
Euclidean distance

• Determine nearest 
neighbors and reject 
outliers

Images from Holz et al., 2015



Projective Data Association
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• For aligning depth or point measurements from a sensor, we 
can use projective data association

• Warping of
measured
3D point

• Analogous 
association
as in direct image 
alignment!

Image from R. Newcombe 2013



Keypoint Alignment and ICP Example
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from youtube/k116t4cef-4



Lessons Learned Today
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• 3D object detection with local 3D keypoints

• 3D keypoint detector derived from 2D detector, e.g. Harris3D

• Intrinsic Shape Signatures detector: points at strong surface 
curvature

• 3D keypoint description

• Extraction of local 3D reference frame from point distribution

• FPFH, Spin Images, SHOT descriptors

• 3D object detection with global features

• Object candidate segmentation, f.e. using region growing

• Object segment classification based on features (VFH, CVFH, …)

• Object detection based on surfel-pair matching and Hough voting

• Iterative Closest Points algorithm for point cloud alignment



Further Reading
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• A. Aldoma et al., Point Cloud Library: Three-Dimensional Object 
Recognition and 6 DoF Pose Estimation, IEEE RAM 2012

• Holz et al., Registration with the Point Cloud Library, IEEE RAM 
2015.

• R. Rusu, Semantic 3D Object Maps for Everyday Manipulation in 
Human Living Environments, Dissertation thesis 2009

• A. Aldoma et al., OUR-CVFH - Oriented, Unique and Repeatable 
Clustered Viewpoint Feature Histogram for Object Recognition 
and 6DOF Pose Estimation, DAGM/OAGM 2012

• Drost et al., Model Globally, Match Locally: Efficient and Robust 
3D Object Recognition, CVPR 2010

• A. Johnson, Spin-Images: A Representation for 3-D Surface 
Matching, Dissertation thesis, 1998
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Thanks for your attention!


