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What We Will Cover Today
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• Taxonomy of object tracking methods

• 3D object tracking using signed distance functions

• Multi-object tracking based on filtering and gated nearest 
neighbor data association



Motion Requires Video

Robotic 3D Vision

• A video is a sequence of frames captured over time

• Our image data is a function of space (x, y) and time (t)

Slide credit: Svetlana Lazebnik
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What is Object Tracking?

Robotic 3D Vision

• Goal

• Estimate the number and state of objects in a region of interest

• Number

• 1: Single-target tracking

• 0 or 1: Detection and tracking

• N: Multi-target detection and tracking

Slide adapted from Robert Collins
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What is Object Tracking?

Robotic 3D Vision

• Goal

• Estimate the number and state of objects in a region of interest

• State

• We are using the term state to describe a vector of quantities that 
characterize the object being tracked. 

E.g. [x, y] (location)

[x, y, dx, dy] (location + velocity)

[x, y, appearance-params] (location + appearance)

• Because observations are typically noisy, estimating the state vector 
is a statistical estimation problem.

Slide adapted from Robert Collins
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What is Object Tracking?

Robotic 3D Vision

• Goal

• Estimate the number and state of objects in a region of interest

• Objects

• Variety of objects to track (including persons)

• 3D tracking: Tracking the camera pose wrt. the object

• Articulated tracking: e.g. tracking body pose

Image sources: Kristen Grauman, Michael Breitenstein, Ahmed Elgammal
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What is Object Tracking?

Robotic 3D Vision

• Goal

• Estimate the number and state of objects in a region of interest

• What distinguishes tracking from “typical” statistical estimation 
(or machine learning) problems?

• Typically a strong temporal component is involved.

• Estimating quantities that are expected to change over time
(thus, expectations of the dynamics play a role).

• Interested in current state Xt for a given time step t.

• Usually assume that we can only compute information seen at 
previous time steps 1, 2, ..., t-1. (Can’t look into the future!)

• Usually we want to be as efficient as possible, even “real-time”.

 These concerns lead naturally to recursive estimators.
Slide credit: Robert Collins
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Types of Tracking

Robotic 3D Vision

• Single-object tracking 

• Focuses on tracking a single target in isolation.

[Z. Kalal, K. Mikolajczyk, J. Matas, PAMI’10]
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Types of Tracking

Robotic 3D Vision

• Multi-object tracking 

• Tries to follow the motion of multiple objects simultaneously.

Ant behavior, courtesy of
Georgia Tech biotracking

“Objects” can be corners, and
tracking gives us optical flow.

Slide credit: Robert Collins
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Types of Tracking

Robotic 3D Vision

Slide credit: Robert Collins

• Articulated tracking 

• Tries to estimate the motion of objects with multiple, coordinated 
parts

[I. Matthews, S. Baker, IJCV’04]
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Types of Tracking

Robotic 3D Vision

Slide credit: Robert Collins

• Active tracking 

• Involves moving the sensor in response to motion of the target. 
Needs to be real-time!
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Applications: Safety & Security

Robotic 3D Vision

Slide credit: Kristen Grauman

Autonomous robots Driver assistance Monitoring pools 
(Poseidon)

Pedestrian detection
[MERL, Viola et al.]

Surveillance
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Applications: Human-Computer 
Interaction

Robotic 3D Vision

Slide adapted from Kristen Grauman

Assistive technology systems
Camera Mouse

(Boston College)

Games
(Microsoft Kinect)
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Applications: Visual Effects

Robotic 3D Vision

MoCap for Pirates of the Carribean, Industrial Light and Magic

Slide adapted from Steve Seitz, Svetlana Lazebnik, Kristen Grauman
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Why Are There So Many Papers on 
Tracking?

Robotic 3D Vision

• Because what kind of tracking “works” depends on problem-
specific factors...

image source: Microsoft
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Factors: Discriminability

Robotic 3D Vision

• How easy is it to discriminate one object from another?

Appearance models can
do all the work

Constraints on geometry
and motion become crucial

Slide credit: Robert Collins
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Factors: Frame Rate

Robotic 3D Vision

Slide credit: Robert Collins

Gradient ascent
(e.g. mean-shift)
works OK

Much harder search
problem. Good data
association becomes
crucial.
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Other Factors

Robotic 3D Vision

• Single target vs. multiple targets

• Single camera vs. multiple cameras

• On-line vs. batch mode

• Do we have a good generic detector? 
(e.g., faces, pedestrians)

• Does the object have multiple parts?

• ...

Slide credit: Robert Collins
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Elements of Tracking

Robotic 3D Vision

Image credit: Kristen Grauman

• Detection

• Find the object(s) of interest in the image.

…

t=1 t=2 t=20 t=21
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Elements of Tracking

Robotic 3D Vision

• Detection

• Find the object(s) of interest in the image.

• Association

• Determine which observations come from the same object.

…

t=1 t=2 t=20 t=21

Image credit: Kristen Grauman
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Elements of Tracking

Robotic 3D Vision

…

t=1 t=2 t=20 t=21

• Detection
• Find the object(s) of interest in the image.

• Association
• Determine which observations come from the same object.

• Prediction 
• Predict future motion based on the observed motion pattern.

• Use this prediction to improve detection and data association 
in later frames.

Image credit: Kristen Grauman
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Elements of Tracking

Robotic 3D Vision

…

t=1 t=2 t=20 t=21

• Detection
• Find the object(s) of interest in the image.

• Association
• Determine which observations come from the same object.

• Prediction 
• Predict future motion based on the observed motion pattern.

• Use this prediction to improve detection and data association 
in later frames.

Image credit: Kristen Grauman
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3D Object Tracking Approaches

Robotic 3D Vision

• This lecture: 

• Focus on single-object tracking

• 6-DoF pose tracking of objects

• Tracking a known object model (model-based 3D tracking)

• Strategy 1: Tracking-by-detection

• Detect object in each frame individually

• Strategy 2: Tracking-by-filtering

• Detect object as measurement within probabilistic filter

• Strategy 3: Tracking-by-registration

• From an initial guess (detection) perform incremental registration
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Model-based Tracking-by-Registration
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Tracking-by-Registration

Robotic 3D Vision

• Consider the following approach:

• Describe object as a set of points                              in its reference 
frame

• Optimize for the pose                      that aligns object points with 
measurements                             at each time step

• Non-linear least squares…

• However this requires to decide 

• which scene points belong to the object (segmentation)

• which object and scene points correspond to each other

• Could be solved using an ICP-like approach
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Tracking-by-Registration using 
Signed Distance Functions

Robotic 3D Vision

• Represent object model with 3D signed distance function (SDF)

• SDF                        maps 3D points to their closest distance to 
object surface

• Sign of the distance specifies “inside” or “outside” of object

• Can be represented and precomputed in a 3D voxel grid

• The surface of the object is given
by the zero level-set

• Ideally, the measured points are
on the surface

• We can define the error function as
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Elements of Tracking

Robotic 3D Vision

• Detection: Where are candidate objects?

• Data association: Which detections belong to the same object?

• Prediction: Where will a tracked object be in the next time step?
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Slide credit: Bastian Leibe



What Makes Multi-Object Tracking Difficult?

Robotic 3D Vision

• Predictions may not be supported by detections

• Occlusion or end of track?

• Unexpected measurements

• New objects or outliers?

• Correspondence ambiguity for a prediction

• Which measurement is the correct one?

• Correspondence ambiguity for a measurement

• Which object track shalle the measurement belong to?
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Recap: Probabilistic Model of Time-Sequential 
Processes
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• Hidden state X gives rise to noisy observations Y

• At each time t, 

• the state changes stochastically from Xt-1 to Xt
• state change depends on action Ut
• we get a new observation Yt

X0 X1

Y0 Y1

Xt

Yt

…

U0 U1 Ut…

…



• Only the immediate past matters for a state transition

• Observations depend only on the current state

Recap: Markov Assumptions
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   tttttt UXXpUXXp ,, 1:01:0  

   tttttt XYpYUXYp 1:0:0:0 ,,

state transition model

observation model

X0 X1

Y0 Y1

Xt

Yt

…

U0 U1 Ut…

…



• Prediction:

• Correction:

Recap: Predict-Correct Cycle
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• Approach: probabilistic filtering of position, velocity, etc. of each 
object track (state)         based on measurements

• Data association before correction step

• How?

• Unassociated measurements create new tracks

• Discard tracks that cannot be associated to measurements

Multi-Object Tracking by Filtering
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• Gating

• Only consider measurements within a 
certain area around the predicted location

Large gain in efficiency, since only a small 
region needs to be searched

• Nearest Neighbor Association

• Among the candidates in the gating region, 
only take the one closest to the prediction

Gating Nearest Neighbor Data Association
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Slide adapted from Bastian Leibe



• Recall: Kalman Filter

• Maintains a Gaussian state estimate        ,

• Perform gating based on the distribution of the “innovation”

• Gating volume is ellipsoidal

• E.g. choose volume that corresponds to
95% of probability mass

• Side note: Mahalanobis distance is
-distributed, look up threshold in
-distribution table

Gating with Mahalanobis Distance
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Slide adapted from Bastian Leibe



• Limitations

• For NN assignments, there is always a finite chance that the 
association is incorrect, which can lead to serious effects

If a Kalman filter is used, a falsely assigned measurement may lead 
the filter to lose track of its target

• The NN filter makes assignment decisions only based on the current 
frame

• More information is available by examining subsequent images

Data association decisions could be postponed until a future frame 
will resolve the ambiguity

Problems with NN Assignment
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Slide credit: Bastian Leibe



• More powerful approaches

• Multi-Hypothesis Tracking (MHT)

• Well-suited for KF, EKF approaches

• Joint Probabilistic Data Association Filters (JPDAF)

• Well-suited for PF approaches

• Data association as convex optimization problem

• Bipartite Graph Matching (Hungarian algorithm)

• Network Flow Optimization

=> Efficient, globally optimal solutions for subclass of problems

Other Multi-Object Tracking Approaches

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 36
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Shape Priors for 4D Stereo Reconstruction 

Approach: impose shape and motion priors for spatio-temporal reconstruction of vehicles

(Engelmann, S, Leibe, WACV 2017)

Learned 3D SDF shape embedding
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Shape Priors for 4D Stereo Reconstruction

(Engelmann, S, Leibe, WACV 2017)

Robotic 3D Vision

Some results

Aligned stereo reconstructions

Shape completion
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Lessons Learned Today

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 39

• Object tracking involves detection, motion estimation 
(prediction) and data association over time

• 3D object tracking of an object model through registration

• ICP-based tracking-by-registration

• SDF-based tracking-by-registration

• Multi-object tracking involves a harder data association problem

• Gated Nearest Neighbor filter

• More sophisticated methods f.e. based on convex optimization
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Thanks for your attention!


