

Computer Vision Group Prof. Daniel Cremers

Robotic 3D Vision

Lecture 17: 3D Object Tracking

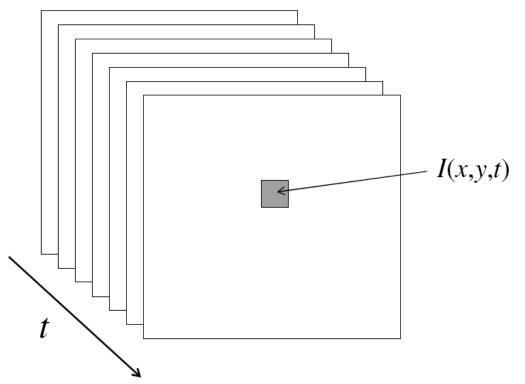
Prof. Dr. Jörg Stückler Computer Vision Group, TU Munich http://vision.in.tum.de

What We Will Cover Today

- Taxonomy of object tracking methods
- 3D object tracking using signed distance functions
- Multi-object tracking based on filtering and gated nearest neighbor data association

Motion Requires Video

- A video is a sequence of frames captured over time
- Our image data is a function of space (X, Y) and time (t)



Slide credit: Svetlana Lazebnik

- Goal
 - Estimate the number and state of objects in a region of interest
- Number
 - 1: Single-target tracking
 - 0 or 1: Detection and tracking
 - N: Multi-target detection and tracking

Slide adapted from Robert Collins

- Goal
 - Estimate the number and state of objects in a region of interest
- State
 - We are using the term state to describe a vector of quantities that characterize the object being tracked.
 - E.g. [x, y] (location) [x, y, dx, dy] (location + velocity) [x, y, appearance-params] (location + appearance)
 - Because observations are typically noisy, estimating the state vector is a statistical estimation problem.

Slide adapted from Robert Collins

- Goal
 - Estimate the number and state of objects in a region of interest
- Objects
 - Variety of objects to track (including persons)
 - 3D tracking: Tracking the camera pose wrt. the object
 - Articulated tracking: e.g. tracking body pose

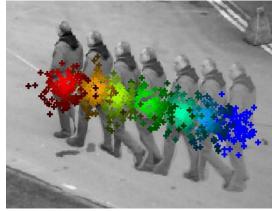


Image sources: Kristen Grauman, Michael Breitenstein, Ahmed Elgammal6Prof. Dr. Jörg Stückler, Computer Vision Group, TUM

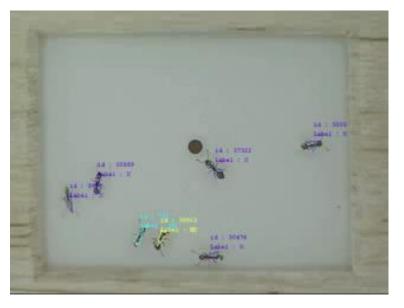
- Goal
 - Estimate the number and state of objects in a region of interest
- What distinguishes tracking from "typical" statistical estimation (or machine learning) problems?
 - Typically a strong temporal component is involved.
 - Estimating quantities that are expected to change over time (thus, expectations of the dynamics play a role).
 - Interested in current state X_t for a given time step t.
 - Usually assume that we can only compute information seen at previous time steps 1, 2, ..., t-1. (*Can't look into the future!*)
 - Usually we want to be as efficient as possible, even "real-time".

 \Rightarrow These concerns lead naturally to recursive estimators.

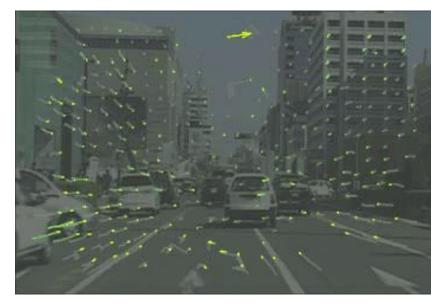
- Single-object tracking
 - Focuses on tracking a single target in isolation.

[Z. Kalal, K. Mikolajczyk, J. Matas, PAMI'10]

- Multi-object tracking
 - Tries to follow the motion of multiple objects simultaneously.

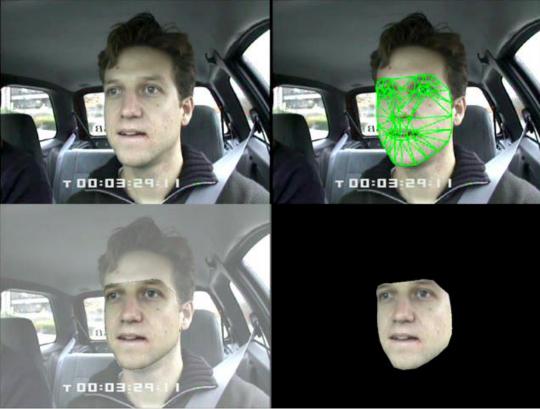


Ant behavior, courtesy of Georgia Tech biotracking



"Objects" can be corners, and tracking gives us optical flow.

- Articulated tracking
- Tries to estimate the motion of objects with multiple, coordinated
 - parts



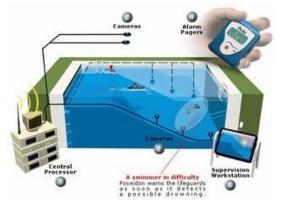
[I. Matthews, S. Baker, IJCV'04]

- Active tracking
 - Involves moving the sensor in response to motion of the target. Needs to be real-time!

Applications: Safety & Security

Autonomous robots

Driver assistance



Monitoring pools (Poseidon)

Pedestrian detection [MERL, Viola et al.]

Surveillance Slide credit: Kristen Grauman

Applications: Human-Computer Interaction

Games (Microsoft Kinect) Assistive technology systems Camera Mouse (Boston College)

Slide adapted from Kristen Grauman

Applications: Visual Effects

MoCap for Pirates of the Carribean, Industrial Light and Magic

Slide adapted from Steve Seitz, Svetlana Lazebnik, Kristen Grauman

Why Are There So Many Papers on Tracking?

 Because what kind of tracking "works" depends on problemspecific factors...

Robotic 3D Vision

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM

Factors: Discriminability

• How easy is it to discriminate one object from another?

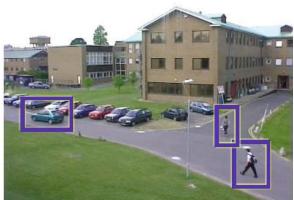
Appearance models can do all the work

Constraints on geometry and motion become crucial

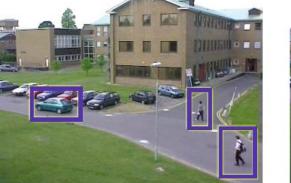
Factors: Frame Rate

frame n

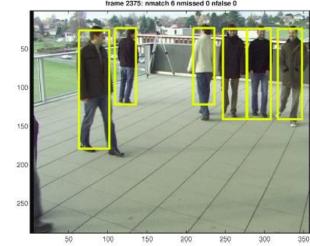
frame n+1



Gradient ascent (e.g. mean-shift) works OK

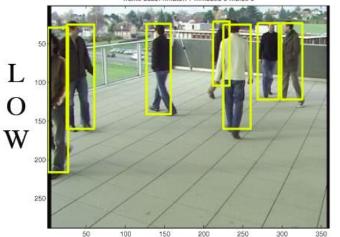


rame 2325: nmatch 7 nmissed 0 nfalse 0



Much harder search problem. Good data association becomes crucial.

Slide credit: Robert Collins



Robotic 3D Vision

Η

Ι

G

Η

Other Factors

- Single target *vs.* multiple targets
- Single camera *vs.* multiple cameras
- On-line *vs.* batch mode
- Do we have a good generic detector?
 (e.g., faces, pedestrians)
- Does the object have multiple parts?

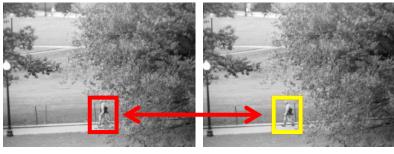
t=1

t=2

t=20

t=21

- Detection
 - Find the object(s) of interest in the image.



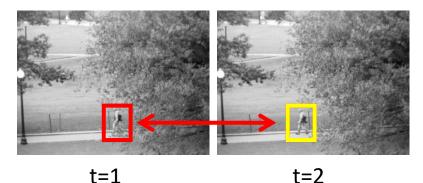
t=1

t=2

t=20

t=21

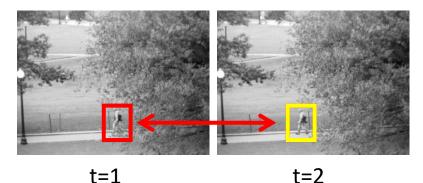
- Detection
 - Find the object(s) of interest in the image.
- Association
 - Determine which observations come from the same object.



t=20

t=21

- Detection
 - Find the object(s) of interest in the image.
- Association
 - Determine which observations come from the same object.
- Prediction
 - Predict future motion based on the observed motion pattern.
 - Use this prediction to improve detection and data association in later frames.



t=20

t=21

- Detection
 - Find the object(s) of interest in the image.
- Association
 - Determine which observations come from the same object.
- Prediction
 - Predict future motion based on the observed motion pattern.
 - Use this prediction to improve detection and data association in later frames.

3D Object Tracking Approaches

- This lecture:
 - Focus on single-object tracking
 - 6-DoF pose tracking of objects
 - Tracking a known object model (model-based 3D tracking)
- Strategy 1: Tracking-by-detection
 - Detect object in each frame individually
- Strategy 2: Tracking-by-filtering
 - Detect object as measurement within probabilistic filter
- Strategy 3: Tracking-by-registration
 - From an initial guess (detection) perform incremental registration

Model-based Tracking-by-Registration

Tracking-by-Registration

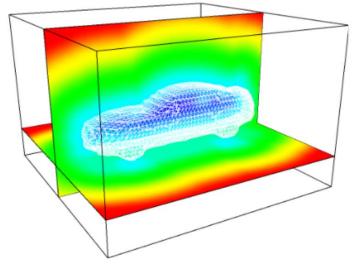
- Consider the following approach:
 - Describe object as a set of points $\mathcal{X} = \{\mathbf{x}_i\}_{i=1}^N$ in its reference frame
 - Optimize for the pose $\boldsymbol{\xi} \in se(3)$ that aligns object points with measurements $\mathcal{Y} = \{\mathbf{y}_j\}_{j=1}^M$ at each time step

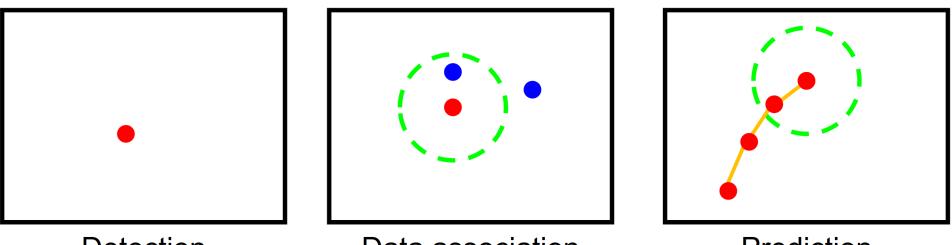
$$E(\boldsymbol{\xi}) = \frac{1}{2} \sum_{(i,j) \in \mathcal{C}} \left\| \mathbf{x}_i - \mathbf{y}_j \right\|_2^2$$

- Non-linear least squares...
- However this requires to decide
 - which scene points belong to the object (segmentation)
 - which object and scene points correspond to each other
- Could be solved using an ICP-like approach

Tracking-by-Registration using Signed Distance Functions

- Represent object model with 3D signed distance function (SDF)
- SDF $\Phi(\mathbf{x}) \mapsto \mathbb{R}$ maps 3D points to their closest distance to object surface
- Sign of the distance specifies "inside" or "outside" of object
- Can be represented and precomputed in a 3D voxel grid
- The surface of the object is given by the zero level-set $\Phi(\mathbf{x}) = 0$
- Ideally, the measured points are on the surface
- We can define the error function as $E(\boldsymbol{\xi}) = \frac{1}{2} \sum_{i=1}^{N} \Phi(\mathbf{T}(\boldsymbol{\xi}) \overline{\mathbf{x}}_{i})^{2}$





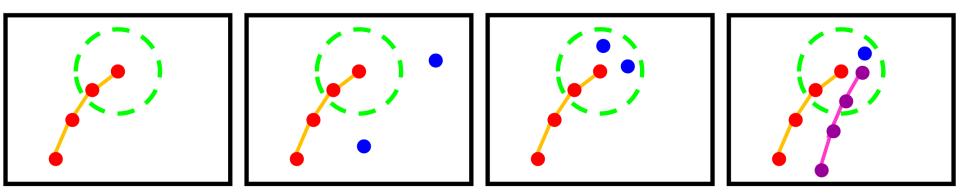
Detection

Data association

Slide credit: Bastian Leibe

- Detection: Where are candidate objects?
- Data association: Which detections belong to the same object?
- Prediction: Where will a tracked object be in the next time step?

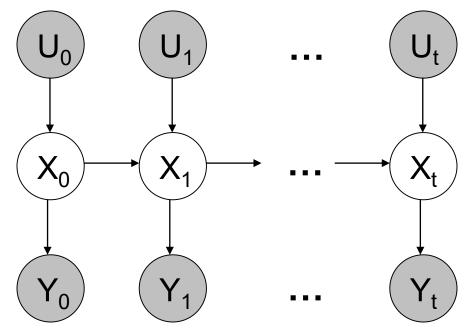
What Makes Multi-Object Tracking Difficult?



- Predictions may not be supported by detections
 - Occlusion or end of track?
- Unexpected measurements
 - New objects or outliers?
- Correspondence ambiguity for a prediction
 - Which measurement is the correct one?
- Correspondence ambiguity for a measurement
 - Which object track shalle the measurement belong to?

Recap: Probabilistic Model of Time-Sequential Processes

- Hidden state X gives rise to noisy observations Y
- At each time t,
 - the state changes stochastically from X_{t-1} to X_t
 - state change depends on action U_t
 - we get a new observation Y_t



Recap: Markov Assumptions

• Only the immediate past matters for a state transition

$$p(X_t|X_{0:t-1}, U_{0:t}) = p(X_t|X_{t-1}, U_t)$$

state transition model

• Observations depend only on the current state

$$p(Y_t|X_{0:t}, U_{0:t}, Y_{0:t-1}) = p(Y_t|X_t)$$

$$(U_0, U_1, \dots, U_t)$$

$$(X_0, X_1, \dots, X_t)$$

$$(Y_0, Y_1, \dots, Y_t)$$

observation model

Recap: Predict-Correct Cycle

• Prediction:

$$p(X_{t} | y_{0:t-1}, u_{0:t}) = \int p(X_{t} | X_{t-1}, u_{t}) p(X_{t-1} | y_{0:t-1}, u_{0:t-1}) dX_{t-1}$$
observation
$$y_{t}$$
action
$$u_{t}$$

• Correction:

$$p(X_t | y_0, ..., y_t) = \frac{p(y_t | X_t)p(X_t | y_{0:t-1}, u_{0:t})}{\int p(y_t | X_t)p(X_t | y_{0:t-1}, u_{0:t})dX_t}$$

Multi-Object Tracking by Filtering

Approach: probabilistic filtering of position, velocity, etc. of each object track (state) x based on measurements

$$\mathcal{Y} = \{\mathbf{y}_1, \dots, \mathbf{y}_M\}$$

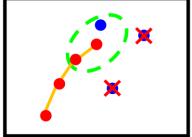
- Data association before correction step
 - How?
- Unassociated measurements create new tracks
- Discard tracks that cannot be associated to measurements

Slide adapted from Bastian Leibe

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM

- Nearest Neighbor Association
 - Among the candidates in the gating region, only take the one closest to the prediction

- **Gating Nearest Neighbor Data Association**
 - Gating ۲
 - Only consider measurements within a certain area around the predicted location
 - \Rightarrow Large gain in efficiency, since only a small region needs to be searched

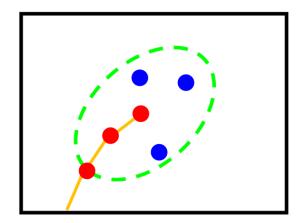


Gating with Mahalanobis Distance

- Recall: Kalman Filter
 - Maintains a Gaussian state estimate $\,oldsymbol{\mu}_t$, $oldsymbol{\Sigma}_t$
- Perform gating based on the distribution of the "innovation"

$$\mathcal{N}(\mathbf{y}_t - h(\boldsymbol{\mu}^{-}_t), \boldsymbol{\Sigma}_{m_t} + \mathbf{H}_t \boldsymbol{\Sigma}_t^{-} \mathbf{H}_t^{\top})$$

- Gating volume is ellipsoidal
- E.g. choose volume that corresponds to 95% of probability mass
- Side note: Mahalanobis distance is χ^2 -distributed, look up threshold in χ^2 -distribution table



Problems with NN Assignment

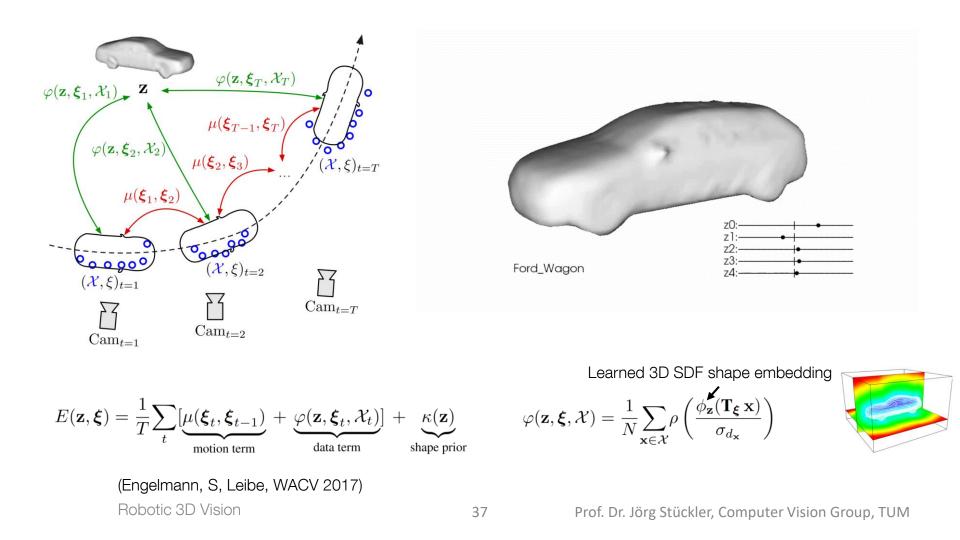
- Limitations
 - For NN assignments, there is always a finite chance that the association is incorrect, which can lead to serious effects
 - ⇒If a Kalman filter is used, a falsely assigned measurement may lead the filter to lose track of its target
 - The NN filter makes assignment decisions only based on the current frame
 - More information is available by examining subsequent images
 - ⇒Data association decisions could be postponed until a future frame will resolve the ambiguity

Other Multi-Object Tracking Approaches

- More powerful approaches
 - Multi-Hypothesis Tracking (MHT)
 - Well-suited for KF, EKF approaches
 - Joint Probabilistic Data Association Filters (JPDAF)
 - Well-suited for PF approaches
- Data association as convex optimization problem
 - Bipartite Graph Matching (Hungarian algorithm)
 - Network Flow Optimization
 - => Efficient, globally optimal solutions for subclass of problems

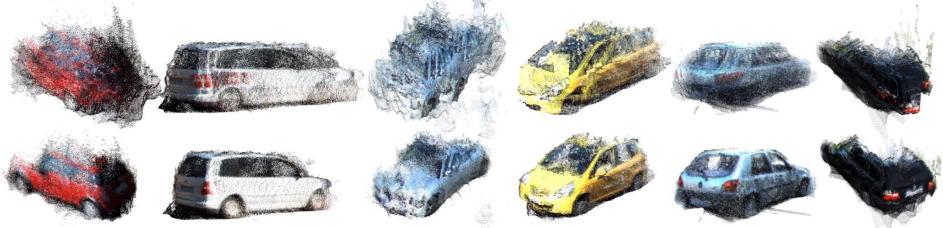
Shape Priors for 4D Stereo Reconstruction

Approach: impose shape and motion priors for spatio-temporal reconstruction of vehicles



Shape Priors for 4D Stereo Reconstruction

Aligned stereo reconstructions



(Engelmann, S, Leibe, WACV 2017)

Robotic 3D Vision

Lessons Learned Today

- Object tracking involves detection, motion estimation (prediction) and data association over time
- 3D object tracking of an object model through registration
 - ICP-based tracking-by-registration
 - SDF-based tracking-by-registration
- Multi-object tracking involves a harder data association problem
 - Gated Nearest Neighbor filter
 - More sophisticated methods f.e. based on convex optimization

Thanks for your attention!