
Computer Vision Group 
Prof. Daniel Cremers

Robotic 3D Vision

Prof. Dr. Jörg Stückler

Computer Vision Group, TU Munich

http://vision.in.tum.de

Lecture 18: Dense Stereo Reconstruction



What We Will Cover Today

Robotic 3D Vision

• Stereo Perception

• Stereo Rectification

• Dense Depth Reconstruction from Two and Multiple Views

• Dense Correspondence Search

• Disparity Space Image

• Regularization, Semi-Global Matching

• Depth Sensors

• Next lecture: From dense depth images to dense 3D maps
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Stereo Perception

Robotic 3D Vision

Image credit: D. Scaramuzza
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Dense Depth from Two Views

Robotic 3D Vision

• So far: triangulation of
corresponding interest points
between two images to find 
depth

• How can we obtain depth
densely for all pixels in an 
image?

• Assume relative pose
between the camera images
known

• Assume intrinsic camera
calibration known

Image source: Scharstein et al., Middlebury stereo benchmark

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM4



Sparse 3D Reconstruction
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Image credit: D. Scaramuzza



Dense 3D Reconstruction
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Image credit: D. Scaramuzza



Recap: Epipolar Geometry

• Camera centers ,    and image point span the epipolar plane 
• The ray from camera center through point projects as the epipolar

line in image plane 
• The intersections of the line through the camera centers with the image

planes are called epipoles ,
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Epipolar Lines, Converging Cameras
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Epipolar Lines, Parallel Cameras
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Stereo Image Rectification
• Correspondence search

is simplified, if epipolar
lines are horizontal (or
vertical)

• Idea: Rectify images
• warp the images onto

a common image plane 

• only horizontal or
vertical translation
between the new
cameras

• Equal intrinsics

• „minimize“ 
warping
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Stereo Rectification (1)
• In the following for convenience, we will write the

perspective projection of a 3D point expressed in the world
frame into the camera frame as
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camera intrinsics
matrix

3D rotation
matrix

3D point
in world
frame

3D translation/
camera center in
world frame

Slide adapted from D. Scaramuzza



Stereo Rectification (2)
Left camera projection:                    Right camera projection:
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Slide adapted from D. Scaramuzza



Stereo Rectification (3)
Goal: warp left and right images such that image planes 
coplanar and intrinsics are equal
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Slide adapted from D. Scaramuzza



Stereo Rectification (4)
Solving for 3D point for each camera yields homographies
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Slide adapted from D. Scaramuzza



Stereo Rectification (5)
• How to choose the new intrinsics and rotation ?

• Fusiello et al., A Compact Algorithm for Rectification of 
Stereo Pairs, Mach. Vision and Appl. 1999

• Choose

where
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Slide adapted from D. Scaramuzza



Stereo Rectification Example

Robotic 3D Vision

Image source: Loop and Zhang, 2001

rectified
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Disparity

Robotic 3D Vision

• Assume rectified stereo images

• Disparity: (horizontal) pixel difference of corresponding pixels
between the two images

Left camera

Right camera

Point

Disparity

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM17



Relation of Disparity and Depth

Robotic 3D Vision

• Disparity is inversely proportional to depth:
• The larger the depth, the smaller the disparity

• Disparity is proportional to the baseline:
• The larger the baseline, the larger the disparity

Similar triangles:
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Relation of Disparity and Depth

Robotic 3D Vision

Disparity image Depth image
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Dense Stereo Depth Estimation
• For each pixel in left image:

• Compare photoconsistency with every pixel on the corresponding epipolar
line in the right image

• Pick pixel with best similarity

• Problems: 
• Noise
• Intensity of a single pixel not very distinctive

Robotic 3D Vision Prof. Dr. Jörg Stückler, Computer Vision Group, TUM20



Dense Stereo Depth Estimation
• Better idea: Compare patches (blocks)

• New questions:
• What are good patch correlation measures?

• Patch size?

• etc.
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Block Matching Algorithm
• Input: Two images, intrinsics camera calibration, relative pose

• Output: Disparity image

• Algorithm:

• Rectify images

• For each pixel in left image: 

• Compute matching cost along epipolar line using patch comparison

• Determine minimum in matching cost with sub-pixel accuracy

• Filter outliers
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Patch Correlation Measures

• Sum-of-squared differences:

• Sum-of-absolute differences:

• Normalized Cross-Correlation:

Robotic 3D Vision

Less sensitive to outliers

Invariant to illumination changes
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block/window



Block Size

Robotic 3D Vision

• Common choices are 5x5, 11x11, …

• Smaller neighborhood: more details

• Larger neighborhood: less noise

• Suppress pixels with low confidence (f.e. check ratio best match 
vs. second best match, examine local behavior of matching 
cost, etc.)

3x3 block-size 20x20 block-size
Images: R. Szeliski Prof. Dr. Jörg Stückler, Computer Vision Group, TUM24



Probabilistic and Variational Views

Robotic 3D Vision

• We can formulate stereo disparity estimation as maximum
likelihood estimation

• Variational methods define the true underlying signal as
continuous function in the image domain

• Just relying on data fidelity may not work well..

data fidelity
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Behavior of the Correspondence
Measure

Robotic 3D Vision

Images: Pinies et al., 2015

Matching cost

x
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Behavior of the Correspondence
Measure

Robotic 3D Vision

Images: Pinies et al., 2015

Matching cost

x

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM27



Challenges for Dense Correspondence
Search

Robotic 3D Vision

• Corresponding patches may differ !

Image Noise
(Camera-related)

Images: C. Gava
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Challenges for Dense Correspondence
Search

Robotic 3D Vision

• Corresponding patches may differ !

Image Distortion
(Camera-related)

Images: R. Szeliski, H. Dersch
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Challenges for Dense Correspondence
Search

Robotic 3D Vision

• Corresponding patches may differ !

Color Abberation
(Camera-related)

Images: C. Gava
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Challenges for Dense Correspondence
Search

Robotic 3D Vision

• Corresponding patches may differ !

Perspective Distortion
(Viewpoint-related)

Images: R. Szeliski
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Challenges for Dense Correspondence
Search

Robotic 3D Vision

• Corresponding patches may differ !

Occlusions
(Viewpoint-related)

Images: Middlebury benchmark
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Challenges for Dense Correspondence
Search

Robotic 3D Vision

• Corresponding patches may differ !

Specular Reflections
(Viewpoint-related)

Images: Weinmann et al., ICCV 2013
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Challenges for Dense Correspondence
Search

Robotic 3D Vision

• Corresponding patches may differ !

Illumination changes
(Scene-related)

Images: C. Gava
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Challenges for Dense Correspondence
Search

Robotic 3D Vision

• Corresponding patches may differ !

Motion blur
(Scene-related)

Images: C. Gava
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Challenges for Dense Correspondence
Search

Robotic 3D Vision

• Correspondence can be ambiguous !

Low Texture
(Scene-related)

Images: Pinies et al., 2015
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Challenges for Dense Correspondence
Search

Robotic 3D Vision

• Correspondence can be ambiguous !

Repetitive Structure/Texture
(Scene-related)
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Dense Depth from Multiple Views

Robotic 3D Vision

• Straightforward approach: extend two-view matching cost to
sum over matching costs of an image towards multiple images

Slide adapted from R. Szeliski

Matching 

cost

depth
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Disparity Space Image / Cost Volumes

Robotic 3D Vision

• Sum of matching costs between
reference and k-th image for discrete
depth hypotheses in each pixel

• Represent in 3D disparity space image

• Multi-view: inv. depth, „cost volume“ 
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inv.
depth

Image from Newcombe et al., 2011



Multi-View Correspondence Measure

Robotic 3D Vision

Images: R. Newcombe, 2014
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Per-Pixel Max-Likelihood Solution

Robotic 3D Vision

• Simply choosing the depth with best matching cost at each
pixel may not provide a good solution
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2 comparison frames 10 comparison frames 30 comparison frames



Regularization

Robotic 3D Vision

• Neighboring pixels should not be treated independently from
each others

• How can we incorporate prior knowledge about the observed
3D structures such as smoothness or planarity?

• Idea: add regularizing prior term to the optimization problem

trade-off
parameter

regularizer
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Smoothness Regularizers

Robotic 3D Vision

• Quadratic regularizers oversmooth
at discontinuities

• Total variation (TV) favors piece-wise constant
i.e. fronto-parallel solutions

Stair-
casing!

over-
smooth!

Images: R. Newcombe, 2014
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Smoothness Regularizers

Robotic 3D Vision

• Huber-norm regularizer as a trade-off 
between quadratic and TV

• Total generalized variation (TGV) for piecewise
affine or higher-order smooth polynomial surfaces

Images: R. Newcombe, 2014
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Optimization with Regularizers

Robotic 3D Vision

• Depending on the formulation, different techniques for
optimization can be applied

• Variational methods (f.e. primal-dual optimization) for continuous
depth

• Discrete energy optimization methods (f.e. graph-cuts) 
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Semi-Global Matching

Robotic 3D Vision

• Approximate discrete inference of
disparities in Markov Random Field

• Define aggregated cost along scanlines

• Determine disparity that minimizes
sum of aggregated costs over scanlines

• Typically 8 or 16 scanlines
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pixel

scanline direction

matching cost disparity range pairwise terms

Popular choice of pairwise term:

8 scanlines



Effect of Regularization

Robotic 3D Vision

Data term: cost volume over L1-norm on photometric residuals

Regularizer: Huber-norm on inverse depth gradient
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Images: R. Newcombe et al., 2011



Dense Depth from Multiple Views

Robotic 3D Vision

• Some problems:

• How to select reference image?

• How to select comparison images?

• How to handle varying image overlap?

• How to handle varying occlusions in each image pair?

• How to perform optimization efficiently?
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Dense Tracking and Mapping

Robotic 3D Vision

Newcombe et al., DTAM: Dense Tracking and Mapping in Real-time, ICCV 2011 
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Active Depth Sensing

Robotic 3D Vision

• What can we do about textureless scenes?

Images: J. Sturm
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Active Depth Sensing

Robotic 3D Vision

• Idea: Project light/texture

Images: J. Sturm
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Depth Cameras

Robotic 3D Vision

Time-of-Flight Structured Light

…

…

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM52



Structured Light Measurement 
Principle

Robotic 3D Vision

• Project speckle pattern using infrared laser and diffraction
element

• Measure infrared speckles using infrared camera

• Measure corresponding RGB image using color camera

Infrared
pattern

projector Color
camera

Infrared
camera

baseline

Slide adapted from J. Sturm
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Structured Light Measurement 
Principle

Robotic 3D Vision

• Use known baseline and reference pattern for depth
measurement
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Structured Light Measurement 
Principle

Robotic 3D Vision

Slide adapted from J. Sturm

Block 
matching

(9x9)

IR reference pattern IR pattern
in actual scene

Depth image
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Time-of-Flight Measurement Principle

• Idea: emit timed IR pulse and measure its time of return

• Difficult to create pulses and measure time precisely

Robotic 3D Vision

Emitter

Detector

Timer

start

stop

Slide adapted from N. Navab

3D 
Surface
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Time-of-Flight Measurement Principle

• Idea: emit continous modulated IR wave signal and measure
phase shift

• Signal periodicity creates phase ambiguities: use multiple 
frequencies

Robotic 3D Vision

Emitter

Detector

Phase 
meter

start

stop

Slide adapted from N. Navab

3D 
Surface

phase shift
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Active vs. Passive Sensors

Robotic 3D Vision

• Active Sensors

• Surfaces do not need to be textured

• Bring their own light, also work in low-light scenarios

• But: Diffuse IR sunlight typically overrides emitted light

• Difficulties for IR-absorbing or reflective materials

• Passive Sensors (f.e. RGB-only)

• Do not rely on measuring emitted light

• Are not limited by the resolution of the projection or ToF
measurement principle

• Distance

• Multi-path noise (ToF)
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Lessons Learned Today

Robotic 3D Vision

• Stereo depth reconstruction from two and multiple views

• Stereo rectification simplifies correspondence search for two
views

• Dense correspondence search using block matching

• Correspondences can be ambiguous

• Regularization with priors to help with noisy and ambiguous data
terms

• Depth cameras

• Structured light principle

• Time-of-flight principle
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Thanks for your attention!


