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Lecture 1: Introduction



Organization

Lecturer:

• Prof. Dr. Jörg Stückler (stueckle@in.tum.de)

Teaching Assistant:

• Rui Wang (rui.wang@in.tum.de)

Course Webpage:

• https://vision.in.tum.de/teaching/ws2017/r3dv

• Slides will be made available on the webpage
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Organization
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• Structure: 3L (lecture) + 1E (exercises)

• 6 ECTS credits

• Study programme: M. Sc. Informatics
Please subscribe to the lecture in TUMonline!

• Place & Time

• Lecture: Tue 14:15 – 15:45 00.09.038

• Lecture/Exercises:    Thu 14:15 – 16:00 00.11.038

• Exam

• Planned as written exam

• Date tba



Course Organization

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 4

• https://vision.in.tum.de/teaching/ws2017/r3dv

• A detailed course schedule will appear soon on the website

https://vision.in.tum.de/teaching/ws2017/r3dv


Exercises and Demos
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• Exercises
• Typically 1 exercise sheet every 2 weeks (theoretical and Matlab-

based assignments)

• Hands-on experience with the algorithms from the lecture

• Send in your solutions the night before the exercise class

• Handing in the exercises is not mandatory to take the exam

• First exercise class: Thursday Nov. 2nd 2017, 14.15-16.00 

• Teams are encouraged!
• You can form teams of up to 3 people for the exercises

• Each team should only turn in one solution

• List the names and matriculation numbers of all team members 
in the submission

• Each exercise will be demo’ed by a team during the exercise class



Course Requirements
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• We will build on basics from previous lectures

• Computer Vision II: Multiple View Geometry
https://vision.in.tum.de/teaching/ss2017/mvg2017

• Solid background in linear algebra and analysis

https://vision.in.tum.de/teaching/ss2017/mvg2017


Textbooks

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 7

• No single textbook for the class, some basics can be found in

• We will also give out research papers

• Tutorials for basic techniques

• State-of-the-art research papers for current developments

An Invitation to 3D 
Vision, Y. Ma, S. 
Soatto, J. Kosecka, 
and S. S. Sastry, 
Springer, 2004

Computer Vision – A 
Modern Approach,
D. Forsyth, J. Ponce,
Prentice Hall, 2002

Computer Vision –
Algorithms and 
Applications, R. 
Szeliski, Springer, 
2006

Multiple View 
Geometry in 
Computer Vision, R. 
Hartley and A. 
Zisserman, Cambridge 
University Press, 2004



How to Find Us
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• Office:

• TUM Math&CS Building

• Boltzmannstr. 3, Garching, 2nd floor

• I9, rooms 02.09.044 (Rui Wang), 02.09.059 (me)

• Office hours

• If you have questions about the lecture, come to Rui Wang or me.

• Our regular office hours will be announced

• Send us an email before to confirm a time slot.

Questions are welcome!



Getting Involved

How can you get involved in scientific research during your study?

• Bachelor lab course (10 ECTS)

• Bachelor thesis (15 ECTS)

• Graduate lab course (10 ECTS)

• Interdisciplinary project (16 ECTS)

• Master thesis (30 ECTS)

• Student research assistant (10 EUR/hour, typically 10 
hours/week)
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Vision-based Navigation

• We also offer a practical course on 
Vision-based Navigation in this semester

• Participants will work on a project related 
to vision-based navigation for multicopters

• We still have participant slots available. If you are interested, 
please contact us until Friday, Oct. 20th via 
visnav_ws2017@vision.in.tum.de

• Further information on the course can be found at
https://vision.in.tum.de/teaching/ws2017/visnav_ws2017
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Robots in Complex Environments
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Image credit: Amazon
Image credit: Waymo

Image credit: DHL

Image credit: Boston Dynamics Image credit: IAS TUM / UBremen



Robotic Perception
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(Usenko, von Stumberg, Pangercic, Cremers, IROS 2017)



Robotic Perception
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(Stückler, Schwarz, Behnke, Frontiers 2016)



Robotic Perception
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(Kappler et al., arXiv 2017)



What We Will Cover Today
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• Why Vision for Robotic Perception?

• What is Robotic 3D Vision?

• Terminology of 

• Visual Odometry

• Visual-Inertial Odometry

• Visual Simultaneous Localization and Mapping

• Map Representations

• Dense vs. Sparse Reconstruction

• Visual 3D Object Detection and Tracking

• Indirect and Direct Methods



Sensors for Robotic Perception
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Vision Laser Inertial Proprioceptive Tactile

+ low power 
consumption

+ dense 2D 
projection

+ appearance
+ high frame-rate
- indirect distance

+ accurate
distance

- power 
consumption

- sparse
- low frame-rate
- scan plane

+ linear acceleration
+ gravity
+ rotational velocity
+ high frame-rate
- noise & bias
- local

+ forward
kinematics

(+ forward
dynamics)
- only internal

+ contact with
environment

RGB-D

+ depth image
- power 

consumption



Robotic 3D Vision
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• Robots require 3D scene understanding

• Where is the robot in the environment?

• What is the shape (structure) of the environment?

• Where are task-relevant objects?

• 3D Vision: 3D scene understanding from camera images

Images from: (Osep et al., ICRA 2016), (Kappler et al., arXiv 2017)



Why Vision?

Vision provides robots with rich information about the world

• Dense 2D measurements of the 3D world, in contrast to, for 
example, laser scanners or ultrasonic range scanners

• RGB/grayscale measurements of the appearance of objects 
available to detect and recognize objects

• Range (third dimension) assessable by stereo

• Lightweight and low power consumption (passive cameras)
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Images from: (Pohlen et al., CVPR 2017), (Engel, Stückler, Cremers, IROS 2015)



Types of Cameras

Monocular camera
• Structure from 

motion (chicken-
and-egg problem)

• Scale ambiguity
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Stereo camera
• Depth from 

stereo in fixed 
configuration

• Scale 
observable

• Fixed baseline

RGB-D camera
• Directly 

measures per-
pixel depth

• Active sensing



Visual Odometry
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How does the robot move?



What is Visual Odometry?
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Visual odometry (VO)… 

• … is a variant of tracking

• Track the current pose, i.e. position and orientation, of the 
camera with respect to the environment from its images

• Only considers a limited set of recent images for real-time 
constraints

• … involves a data association problem

• Motion is estimated from corresponding 
interest points or pixels in images, or by 
correspondences towards a local 3D 
reconstruction



What is Visual Odometry?
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Visual odometry (VO)… 

• … is prone to drift due to its 
local view

• … is primarily concerned 
with estimating camera 
motion

• 3D reconstruction often a 
“side product”. If estimated, 
it is only locally consistent



Visual-Inertial Odometry
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(Usenko, Engel, Stückler, Cremers, ICRA 2016)

Sensor includes
• Stereo camera
• 3-axis accelerometer
• 3-axis gyroscope
• Time-synchronization



What is Visual-Inertial Odometry?
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Visual-inertial odometry (VIO)… 

• … complements visual odometry with inertial measurements
• Visual measurements provide up to 6-DoF relative motion using 

the environment as reference

• Inertial sensors measure 3D linear accelerations and angular 
velocities, typically at much higher frame-rate than images

• Gravity is also included in the acceleration measurements 
serving as an absolute external reference

• Pure integration of gravity-compensated linear accelerations 
and angular velocities drifts

• Vision helps to reduce integration drift, estimate sensor biases, 
discern gravity from motion-induced accelerations

• Inertial measurements help to compensate degenerate cases of 
pure visual tracking (textureless areas, fast motion, etc.)



Simultaneous Localization and Mapping
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Where is the robot and what is the 
3D structure of the environment?

(Engel, Stückler, Cremers, IROS 2015)



What is Visual SLAM?
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• Visual simultaneous localization and mapping (VSLAM)…

• Tracks the pose of the camera in a map, and simultaneously

• Estimates the parameters of the environment map (f.e. reconstruct 
the 3D positions of interest points in a common coordinate frame)

• Loop-closure: Revisiting a place allows for drift compensation

• How to detect a loop closure?

Image credit: Clemente et al., RSS 2007



What is Visual SLAM?
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• Visual simultaneous localization and mapping (VSLAM)…

• Tracks the pose of the camera in a map, and simultaneously

• Estimates the parameters of the environment map (f.e. reconstruct 
the 3D positions of interest points in a common coordinate frame)

• Loop-closure: Revisiting a place allows for drift compensation

• How to detect a loop closure?

• Global and local optimization methods

• Global: bundle adjustment, pose-graph optimization, etc.

• Local: incremental tracking-and-mapping approaches, visual 
odometry with local maps. Often designed for real-time.

• Hybrids: Real-time local SLAM + global optimization in a slower 
parallel process (f.e. LSD-SLAM)



Visual SLAM with RGB-D Cameras
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RGB-D SLAM by Map Deformation
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Visual SLAM using Bundle Adjustment
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VO vs. VSLAM
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VO
VSLAM w/o local

map
with local
map

VO



Structure from Motion
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• Structure from Motion (SfM) denotes the joint estimation of 

• Structure, i.e. 3D reconstruction, and

• Motion, i.e. 6-DoF camera poses,

from a collection (i.e. unordered set) of images 

• Typical approach: keypoint matching and bundle adjustment



Structure from Motion
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Agarwal et al., Building Rome in a Day, ICCV 2009, „Dubrovnik“ image set



VSLAM vs. SfM
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VSLAMSfM



Sparse vs. Dense Reconstruction
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(Mur-Artal and Tardós, TRO 2015) (Newcombe et al., ICCV 2011)(Engel et al., ECCV 2014)

Sparse
(ORB-SLAM)

Semi-Dense
(LSD-SLAM)

Dense
(DTAM)

Good for VO/VSLAM = Good for robotic perception?



Dense VSLAM with a Single Camera
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(Newcombe et al., DTAM: Dense Tracking and Mapping in Real-time, ICCV 2011) 



How Should We Represent The Map?
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Sparse interest points
Volumetric, implicit surface

Explicit surface 
(surfels, mesh,…)

Keyframe-based maps

(Lynen et al., RSS 2015), (Newcombe, 2015), (Weise et al., 2009), (Maier et al., 2012), (Engel et al., ECCV 2014)

Volumetric, occupancy

Good for VO/VSLAM = Good for robotic perception?



3D Object Detection and Tracking
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Where are objects in the robot’s surrounding?  

(Wüthrich et al., IROS 2013)



What is Visual 3D Object Detection?
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• Visual 3D object detection…

• …finds an object in an image and

• …estimates its 6-DoF pose from 
the image

(Choi and Christensen, RAS 2016)



What is Visual 3D Object Tracking?
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• Visual 3D object tracking…

• …tracks the 6-DoF pose of an object in an image sequence

• Tracking-by-detection, incremental registration, …

• Multi-object tracking involves data association

(Ren et al., Real-Time Tracking of Single and Multiple Objects from
Depth-Colour Imagery Using 3D Signed Distance Functions, IJCV 2017)



Joint Object Shape Estimation and Tracking
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Impose shape and motion priors for spatio-temporal 
reconstruction of vehicles

(Engelmann, Stückler, Leibe, WACV 2017)



Indirect vs. Direct Methods
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Indirect Direct

Input images Input images

Track: min. reprojection
error (point distances)

Map: estimate keypoint
parameters (f.e. 3D 
coordinates)

Track: min. photometric/ 
geometric error pixel-wise

Map: estimate per-pixel 
depth from
photoconsistency

Extract and match
keypoints (SIFT,BRIEF,…)



Indirect vs. Direct Methods
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• Direct methods formulate image alignment objective in terms of
photometric error (e.g. intensities)

• Indirect methods formulate image alignment objective in terms of
reprojection error of geometric primitives (e.g. points, lines)



Indirect vs. Direct Methods
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• Which of the approaches performs better is still in debate

• Indirect methods for VO and VSLAM have been investigated for a longer
time by a broader research community

• Hence, indirect VO and VSLAM approaches are currently still more
mature (f.e. ORB-SLAM2)

• However, recent methods such as direct sparse odometry (Engel et al., 
2016) demonstrate better performance than several indirect visual
odometry approaches

• Key to achieving high accuracy with direct methods is the proper 
treatment of camera properties such as vignetting, exposure times, 
rolling shutter etc.



Visual SLAM in Dynamic Scenes
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• So far VO or VSLAM assumed static environments

• How to handle moving or deforming objects in SLAM?

• Recently impressive results with RGB-D cameras



Course Contents
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• Image formation, multi-view geometry, SE3 (recap)

• Probabilistic filtering, non-linear least squares

• Visual odometry 

• Visual-inertial odometry

• Visual SLAM

• Dense reconstruction

• Map representations

• 3D object detection and tracking

• Outlook: Visual SLAM in dynamic scenes
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Thanks for your attention!


