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What We Will Cover Today

Robotic 3D Vision

• Dense map representations

• Implicit vs. explicit representations

• Occupancy maps

• Signed distance function maps

• Surfel splat maps
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Recap: Dense Depth from Two Views

Robotic 3D Vision

• So far: triangulation of
corresponding interest points
between two images to find 
depth

• How can we obtain depth for
all pixels in one of the
images?

• Assume relative pose
between the camera images
known

• Assume intrinsic camera
calibration known

Image source: Scharstein et al., Middlebury stereo benchmark
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Recap: Relation of Disparity and Depth

Robotic 3D Vision

• Disparity is inversely proportional to depth:
The larger the depth, the smaller the disparity

• Disparity is proportional to the baseline:
The larger the baseline, the larger the disparity

Similar triangles:
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Recap: Dense Stereo Depth Estimation
• Better idea: Compare patches (blocks)

• New questions:
• What are good patch correlation measures?

• Patch size?

• etc.
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Recap: Dense Depth from Multiple Views

Robotic 3D Vision

• Straightforward approach: extend two-view matching cost to
sum over matching costs of an image towards multiple images

Slide adapted from R. Szeliski

Matching 

cost

depth
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Recap: Active Depth Sensing

Robotic 3D Vision

• What can we do about textureless scenes?

Images: J. Sturm

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM7



Recap: Active Depth Sensing

Robotic 3D Vision

• Idea: Project light/texture

Images: J. Sturm
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Recap: Structured Light Measurement 
Principle

Robotic 3D Vision

• Project speckle pattern using infrared laser and diffraction
element

• Measure infrared speckles using infrared camera

• Measure corresponding RGB image using color camera

Infrared
pattern

projector Color
camera

Infrared
camera

baseline

Slide adapted from J. Sturm
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Recap: Structured Light Measurement 
Principle

Robotic 3D Vision

• Use known baseline and reference pattern for depth
measurement

Image: Stückler, 2014
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Recap: Structured Light Measurement 
Principle

Robotic 3D Vision

Slide adapted from J. Sturm

Block 
matching

(9x9)

IR reference pattern IR pattern
in actual scene

Depth image
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Recap: Time-of-Flight Measurement 
Principle

• Idea: emit continous modulated IR wave signal and measure
phase shift

• Signal periodicity creates phase ambiguities: use multiple 
frequencies

Robotic 3D Vision

Emitter

Detector

Phase 
meter

start

stop

Slide adapted from N. Navab

3D 
Surface

phase shift
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Dense 3D Map Representations

Robotic 3D Vision

Volumetric Occupancy Maps Volumetric Signed Distance Functions

Surfel Splats

Images: Weise et al., 2011; Wurm et al., 2010; Newcombe et al., 2011
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Example Usage of Dense 3D Maps

Robotic 3D Vision

Augmented and
virtual reality

Robot navigation
and exploration

Images: von Stumberg et al., 2016; Newcombe et al., 2011
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Dense 3D Maps in SLAM

Robotic 3D Vision

• Tracking and Mapping approaches

• Drift accumulates in the map

• Fuse map from dense depth images in optimized camera poses

• Offline integration after sequence recording

• Online integration requires map modification when poses change

• Full SLAM: dense bundle adjustment

• Mostly offline approaches

• ElasticFusion: Joint optimization of camera alignment to surfel
map and alignment of corresponding surfels
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• Explicit:

• Image of parametrization

• Implicit:

• Zero set of distance function

Implicit vs. Explicit Surface Representations
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• Explicit:

• Image of parametrization

• Easy to find points on surface

• Can defer problems to
param space

• Implicit:

• Zero set of distance function

• Easy in/out/distance test

• Easy to handle different topologies

Implicit vs. Explicit 
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• Easy to handle different topologies

Implicit Representations
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• General implicit function:

• Interior:

• Exterior:

• Surface:

• Special case:

• Signed distance function (SDF)

Implicit Representations
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• General implicit function:

• Interior:

• Exterior:

• Surface:

• Special case:

• Signed distance function (SDF)
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Implicit or Explicit?

Robotic 3D Vision

Volumetric Occupancy Maps Volumetric Signed Distance Functions

Surfel Splats

Images: Weise et al., 2011; Wurm et al., 2010; Newcombe et al., 2011
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Occupancy Grid Maps

Robotic 3D Vision

• Idea: Discretize space into grid and represent „occupancy“ of
each cell

Images: Thrun et al., 2005; Wurm et al., 2010

2D

3D
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Probabilistic Estimation of Occupancy

Robotic 3D Vision

• Map is a grid of cells

• Each cell state is modelled as a binary random variable
which can take on the values occupied or empty

• We obtain (stochastic) measurements of the cell states

• We assume the probability of each cell state to be stochastically
independent from the state of all other cells given the
measurements

• This means, we can estimate the occupancy probability in each cell
individually
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Recursive Bayesian Filtering of
Occupancy

Robotic 3D Vision

• Occupancy probability can be estimated recursively

• Note the use of the inverse sensor model

• Log-odds simplifies calculations and improves numeric stability
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Inverse Sensor Model

Robotic 3D Vision

• Typical inverse sensor model for range sensors

Image: C. Stachniss, 2006
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Inverse Sensor Model

Robotic 3D Vision

• Typical inverse sensor model for range sensors

Image: C. Stachniss, 2006
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Example: 2D Mapping with Sonar 
Sensors

Robotic 3D Vision

Image: Thrun et al., 2005
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Example: 2D Mapping with Sonar 
Sensors

Robotic 3D Vision

Image: Thrun et al., 2005
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Memory Consumption

• 2D floor map of a 40m x 40m building at 0.05m resolution allocates

• 3D volumetric map with size 40x40x40m at 0.05m resolution needs

• Memory consumption quickly gets huge!

• Likely large volumes will be empty!

• What can we do?

Robotic 3D Vision

Images: Thrun et al., 2005; Wurm et al., 2010

cells (5.12 MB at double precision)

cells (4.096 GB at double precision)
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3D Occupancy Maps in Octrees

Robotic 3D Vision

Images: Wurm et al., 2010

• Only allocate observed voxels

• Recursively subdivide map volume: multi-resolution
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Example: OctoMap & RGB-D SLAM

Robotic 3D Vision

Endres et al., 3D Mapping with RGB-D Cameras, TRO, 2014 
Hornung et al., OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees, Autonomous Robots, 2013
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Example: OctoMap & RGB-D SLAM

Robotic 3D Vision

Endres et al., 3D Mapping with RGB-D Cameras, TRO, 2014 
Hornung et al., OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees, Autonomous Robots, 2013
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Signed Distance Function (SDF)

Robotic 3D Vision

• Occupancy grid maps estimate occupancy of voxels
• Surface only coarsely approximated

• Idea: 
• Instead of occupancy, store the distance from the surface in the grid

cells

• Represent inside/outside the object using the sign

• We can find the zero-level
through interpolation!
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SDF Approach
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SDF Approach
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• Define a function

with value < 0 outside and 
value > 0 inside object



SDF Approach

Robotic 3D Vision

• Define a function

with value < 0 outside and 
value > 0 inside object

• Extract zero-level set
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SDF from Point Sets

Robotic 3D Vision

• Distance to points not 
sufficient

• Approximate surface locally
linear: point and normal

• Determine closest distance to
points along normals

• Inside/outside from normal 
direction

• Smooth approximation using
radial basis function (RBF) 
kernels
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SDFs for 3D Map Representation

Robotic 3D Vision

Images: Bylow et al., 2013; Newcombe et al., 2011
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Projective SDFs from Depth Images

• Given: Depth images, camera intrinsics, camera poses

• The depth images observe distance of
camera view point to surface

• Approximate closest distance from
surface with projective distance

• Further approximation: use distance
along optical axis, i.e. depth

• Estimate weighted average of observed distances to each voxel

Robotic 3D Vision

Images: Bylow et al., 2013; Izadi et al., 2011

optical
axis

projective distance

SDF
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Weighting Functions

• Weighting function represents „confidence“ in the distance
measurement

Robotic 3D Vision

Images: Curless and Levoy, 1996
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SDF: 2D Example

Robotic 3D Vision

Images: Curless and Levoy, 1996
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Further Insights

• Curless and Levoy, 1996, showed that using orthographic projection, 
the zero crossing of the integrated signed distance function is the
least squares surface fit to the distances

• Typically, noise cancels out over multiple measurements

• Often, one limits the integration range to a narrow band around the
zero level-set to increase efficiency and allow for thin objects. The 
signed distance function is then called truncated SDF (TSDF).

• The surface corresponds to the zero-level set
• To generate a depth image from a novel view, it can be efficiently

extracted using raycasting

• A triangular mesh can be extracted using the Marching Cubes algorithm
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Raycasting

• For each pixel in the novel view, cast a ray to find the first zero-
crossing
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Example: KinectFusion

Robotic 3D Vision

• Tracking: Render depth image from current pose, align image

• Mapping: TSDF integration of current image from tracked pose

Newcombe et al., KinectFusion, ISMAR 2011
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Voxel Hashing and Octrees for TSDFs

• Memory consumption of fully allocated volumetric grid
representations of TSDFs also is cubic in environment size and 
inverse cell size

• How to scale TSDF maps to larger environments at higher resolution?

• Idea 1: 
• Only allocate voxels close to the updated

narrow band along the surface

• Index voxels through hashing

• Idea 2:
• Use octree to represent TSDF

• Also incorporate voxel hashing (idea 1)

• Nice feature: multi-resolution TSDF

Robotic 3D Vision

Hash function in voxel position (x,y,z):
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Example: TSDF Voxel Hashing

Robotic 3D Vision

Nießner et al., Real-time 3D Reconstruction at Scale using Voxel Hashing, SIGGRAPH Asia, 2013
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Surfel Map Representation

Robotic 3D Vision

• Represent map as a set of surfel splats

• Surfel splat: point+normal+radius

Images: M. Zwicker, Keller et al., 2013 
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Surfel Map Representation

Robotic 3D Vision

• Represent map as a set of surfel splats

• Surfel splat consists of 3D position , normal      ,
radius , confidence , and time of last observation

• Surfel splats are associated with pixels in depth image through raycasting

• Fusion of point/normal measurement ,         with associated surfel splat

• Unassociated pixels initiate new surfel splats, radius set in proportion to
depth

radial distance
from optical center

noise parameter
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Example: Point-Based Fusion

Robotic 3D Vision

Keller et al., Real-time 3D Reconstruction in Dynamic Scenes using Point-Based Fusion, 3DV 2013
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Example: ElasticFusion

Robotic 3D Vision

Whelan et al., ElasticFusion: Dense SLAM Without A Pose Graph, RSS 2015

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM50



Lessons Learned Today

Robotic 3D Vision

• Dense 3D map representations useful for augmented / virtual reality and
robot navigation and exploration

• 3D occupancy grid maps
• Implicit volumetric surface representation: occupancy probability in grid

cells
• Recursive Bayesian estimation using log-odds filter and inverse sensor

model

• 3D truncated signed distance functions (TSDFs)
• Implicit volumetric surface representation: distance to surface in grid cells
• Recursive weighted average of distance measurements to surface

• Improve memory efficiency of volumetric representations through octrees
and voxel hashing

• 3D surfel representation (explicit)
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Further Reading

Robotic 3D Vision

• Probabilistic Robotics textbook

• Publications:
• Curless and Levoy, A Volumetric Method for Building Complex Models from Range Images, Proc. of

Annual Conf. on Computer Graphics and Interactive Techniques, 1996

• Newcombe et al., KinectFusion: Real-Time Dense Surface Mapping and Tracking, ISMAR 2011

• Hornung et al., OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees, 
Autonomous Robots, 2013

• Nießner et al., Real-time 3D Reconstruction at Scale using Voxel Hashing, SIGGRAPH Asia, 2013

• Keller et al., Real-time 3D Reconstruction in Dynamic Scenes using Point-Based Fusion, 3DV 2013

• Whelan et al., ElasticFusion: Dense SLAM Without A Pose Graph, RSS 2015

Probabilistic
Robotics, 
S. Thrun, W. 
Burgard, D. Fox, 
MIT Press, 2005
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Thanks for your attention!


