
Computer Vision Group 
Prof. Daniel Cremers

Robotic 3D Vision

WS 2017/18

Prof. Dr. Jörg Stückler

Computer Vision Group, TU Munich

http://vision.in.tum.de

Lecture 2: Image Formation, 
Multiple View Geometry Basics



What We Will Cover Today

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 2

• Image formation

• Pinhole camera

• Lenses, thin lens equation, pinhole approximation

• Focus, depth of field, field of view

• Digital cameras

• Camera response function and vignetting

• Camera intrinsics for pinhole camera model

• Lens distortion

• Multiple view geometry basics

• Camera extrinsics

• Epipolar geometry



• Lambertian reflectance: object reflects light with a constant 
brightness at any angle

How to Capture an Image?
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How to Capture an Image?
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• What if we place an image sensor in front of the object?

• A pixel receives a mixture of light from visible object points

• Strong blur! We don’t get a useful image

light source

object

image sensor



How to Capture an Image?
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• Let’s place a barrier with an aperture between object and sensor

• Sensor receives light from a small set of rays

• Blur is reduced

light source

object

image sensorbarrier



• Observation: Images are still blurry

• What causes the blur?

• How can we reduce the blur further?

How to Capture an Image?
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Camera obscura (lat., „dark room“) 
illustrated by Gemma Frisius 1545



How to Capture an Image?
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• For an ideal pinhole, only a single ray passes per sensor point

• No blur, but image is dim

light source

object

image sensorbarrier



• The larger the aperture, the more light arrives at sensor point 
from a range of rays

• The larger the aperture, the blurry the image

How to Capture an Image?
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How to Capture an Image?
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• How can we increase the collected light for small aperture?

• We can increase the exposure time!

• Disadvantage: motion blur increases with exposure time

• Diffraction limits the aperture size from below

light source

object

image sensorbarrier



• New idea: use a lens to focus rays 
from the same object point on the sensor 

• Rays go straight through the lens optical center 

Converging Lenses
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• Rays parallel to the optical axis of the lens converge at the focal 
point

Focal Point
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• Relationship f, z, e?

Thin Lens Equation
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Thin Lens Equation

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 13

object

focal point

lens

image



Thin Lens Equation
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• Thin lens equation:

• Objects satisfying this equation appear in focus on the image

object

focal point

lens

image



• Objects are in focus at a specific distance from the lens along the 
optical axis (i.e. depth)

• At other distances, objects project to a “blur circle” on image

Points in Focus
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• Object out of focus: blur circle has radius

• Infinitesimally small aperture gives minimal radius

• “Good image”: adjust camera settings to achieve smaller radius 
than pixel size

Blur Circle
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• What happens for                ? 

• For                   , we obtain

• Image plane needs to be adjusted towards focal plane for focus 

Pinhole Approximation
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• In the limit: image plane at focal plane

• Object point at      projects to image according to  

Pinhole Approximation
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• More distant objects appear smaller in the image

Perspective Effects
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• Depth of Field: Depth of nearest 
and farest object that appear 
acceptably sharp in image

• Lens only precisely focuses on a 
single depth

• Blur circle increases gradually 
with depth

Depth of Field

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 20

farest

nearest



• The smaller the lens aperture …

• the larger the depth of field

• the less light reaches the sensor in a given exposure time

Depth of Field
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• Pinhole approximation

• The smaller f, the larger the maximum view angle

Field of View
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• Choose lens with appropriate f for application

Field of View
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• Image sensor: array of light-sensitive semi-conducter pixels

• CCD (charge coupled device) or CMOS (complementary 
metal-oxide-semiconductor) technology

• Pixel: diode that converts photons (light energy) to electrons

• Optical lens mounted on sensor

Digital Cameras
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• Digital image is 
an array of D-dim. pixel 
values (RGB values)

• We will also denote an image by a 
function 
that maps pixels on a continuous
image domain       
to their D-dim. values

Digital Image
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• Luminance mainly encoded in
green pixels

• Human visual system much more
sensitive to high frequencies in
luminance than in chrominances

• Bayer pattern (introduced by 
Bryce Bayer in 1967) arranges 
red, green, blue sensitive pixels

• Half the pixels measure green light spectrum in a 
checkerboard pattern

• Other pixels are sensitive to red or blue alternatingly

• “Demosaicing” to obtain RGB-value at each pixel

Bayer Pattern
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• Lenses may focus light of differing wavelengths to different 
focal points

• This leads to chromatic aberration (“purple fringing”)

• Other sources of fringing: 

• Lens flare

• Different sensitivity to colors

• Bayer pattern demosaicing algorithm

Chromatic Aberration and Fringing
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• Rolling shutter: Line-by-line readout of image pixels

• Causes distortions of objects that are in relative motion

• Global shutter: All pixels are read out at the same time

Global vs. Rolling Shutter
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• The objects in the scene radiate light which is focused by 
the lens onto the image sensor

• The pixels of the sensor observe an irradiance             
for an exposure time 

• The camera electronics translates the 
accumulated irradiance into intensity 
values according to a non-linear camera 
response function  

• The measured intensity is

Camera Response Function
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• Lenses gradually focus more light at 
the center of the image than at the 
image borders

• The image appears darker towards 
the borders 

• Also called “lens attenuation”

• Lense vignetting can be modelled as
a map

• Intensity measurement model 

Vignetting
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Robotic 3D Vision

• Point

• Augmented
vector

• Homogeneous
coordinates

2D 3D
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Geometric Point Primitives



Robotic 3D Vision

camera matrix

world coordinates
image pixel coordinates
focal length
camera center

(normalized image coordinates)
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Pinhole Camera Model
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Lens Distortion

• Lens imperfections cause
radial distortion of image

• Deviations stronger towards 
the image borders

• Typically compensated using 
a low-order polynomial, for example,



What We Will Cover Today
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• Image formation

• Pinhole camera

• Lenses, thin lens equation, pinhole approximation

• Focus, depth of field, field of view

• Digital cameras

• Camera response function and vignetting

• Camera intrinsics for pinhole camera model

• Lens distortion

• Multiple view geometry basics

• Camera extrinsics

• Epipolar geometry
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Camera Extrinsics

• Euclidean transformations (                      ) between camera 
view poses and world frame 



• Euclidean transformations apply rotation
and translation

• Euclidean transformations correspond to rigid-body motion

• Rigid-body motion: preserves distances and angles when
applied to points on a body
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Euclidean Transformations



• Rotation matrices have a special structure

i.e. orthonormal matrices that preserve distance and orientation

• They form a group which we denote as Special Orthogonal Group              
• The group operator is matrix multiplication - associative, but not 

commutative!
• Inverse and neutral element exist

• 2D rotations only have 1 degree of freedom (DoF), i.e. angle of
rotation

• 3D rotations have 3 DoFs, several parametrizations exist such as Euler 
angles and quaternions
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Special Orthogonal Group SO(n)



Robotic 3D Vision

• Straight-forward: Orthonormal matrix

• Pro: Easy to concatenate and invert

• Con: Overparametrized (9 parameters for 3 DoF) - problematic
for optimization
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3D Rotation Representations – Matrix



Robotic 3D Vision

• Euler Angles: 3 consecutive rotations around coordinate axes
Example: roll-pitch-yaw angles (X-Y-Z):

with

• 12 possible orderings of rotation axes (f.e. Z-X-Z)

Roll (X)

Pitch (Y)

Yaw (Z)
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3D Rotation Representations – Euler Angles



Robotic 3D Vision

• Pro: Minimal with 3 parameters

• Con: 

• Singularities (gimbal lock)

• concatenation/inversion
via conversion from/to matrix

Roll (X)

Pitch (Y)

Yaw (Z)

1 DoF lost!
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3D Rotation Representations – Euler Angles



Robotic 3D Vision

• Axis-Angle: Rotate along axis by angle             :

where

• Reverse:

• 4 parameters:

• 3 parameters: 
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3D Rotation Representations – Axis-Angle



Robotic 3D Vision

• Pro: minimal representation for 3 parameters

• Con:           

• has unit norm constraint on     which can be problematic for
optimization

• both parametrizations not unique

• concatenation/inversion via 
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3D Rotation Representations – Axis-Angle



Robotic 3D Vision

• Unit Quaternions:                                                ,

• Relation to axis-angle representation:

• Axis-angle to quaternion:

• Quaternion to axis-angle:
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3D Rotation Representations – Quaternion



Robotic 3D Vision

• Pros: 
• Unique up to opposing sign

• Direct rotation of a point:

• Direct concatenation of rotations:

• Direct inversion of a rotation:

with ,                            ,

• Con: Normalization constraint is problematic for optimization
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3D Rotation Representations – Quaternion



• Euclidean transformation matrices have a special structure as
well:

• Translation      has 3 degrees of freedom

• Rotation                         has 3 degrees of freedom

• They also form a group which we call . The group
operator is matrix multiplication:
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Special Euclidean Group SE(3)



• Camera centers ,    and image point span the epipolar plane 
• The ray from camera center through point projects as the epipolar

line in image plane 
• The intersections of the line through the camera centers with the image

planes are called epipoles ,
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Epipolar Geometry



• The rays to the 3D point and the baseline t   are coplanar

• The essential matrix captures the relative camera pose

• Each point correspondence provides an „epipolar constraint“

• 5 correspondences suffice to determine (simpler: 8-point algorithm)
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Essential Matrix



Lessons Learned Today
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• Image formation

• Lenses focus light on image sensor

• Approximation as pinhole camera

• Camera settings determine focus, depth of field and field of view

• Focus, depth of field, field of view

• Digital cameras transfer irradiance to intensity

• Lenses are imperfect: radial distortion and vignetting

• 3D rotation representations

• Recap of basic notions of multiple view geometry
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Thanks for your attention!


