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• Probabilistic modelling of state estimation problems

• Bayesian Filtering

• Kalman Filter

• Extended Kalman Filter

• Particle Filter



Why Probabilistic State Estimation?
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Probabilistic Model of Time-Sequential Processes
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• Hidden state X gives rise to noisy observations Y

• At each time t, 

• the state changes stochastically from Xt-1 to Xt
• state change depends on action Ut
• we get a new observation Yt

X0 X1

Y0 Y1

Xt

Yt

…

U0 U1 Ut…

…



Why Probabilistic State Estimation?
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• Probabilistic modelling accounts for uncertainties

• State estimation: Inference in probabilistic model

• Cope with noisy state transitions and observations

• Maintain uncertainty in the state estimate

• Principled approaches to update the state estimate distribution 
based on probability theory 



Recursive Bayesian Filtering
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• Our goal: recursively estimate probability distribution of state Xt
given all observations seen so far and previous estimate for Xt-1

• We assume

• Knowledge about probability distribution of observations

• Knowledge about probabilistic dynamics of state transitions

• Estimate of initial state 

 ttt UXXp :01:0 ,

 1:0:0:0 ,, tttt YUXYp

 0Xp



• Only the immediate past matters for a state transition

• Observations depend only on the current state

Markov Assumptions
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   tttttt UXXpUXXp ,, 1:01:0  

   tttttt XYpYUXYp 1:0:0:0 ,,

state transition model

observation model
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The Door-Sensing Robot
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• Our robot wants to localize itself along the corridor

• It can detect when it is in front of a door

• Initially it knows nothing about its location: uniform  0Xp

 0Xp



• Our robot wants to localize itself along the corridor

• It can detect when it is in front of a door

• Observation of door increases the likelihood of x at doors

The Door-Sensing Robot
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 xXyYp  00

 yYxXp  00



The Door-Sensing Robot

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 11

• Our robot wants to localize itself along the corridor

• It can detect when it is in front of a door

• Robot moves: state is propagated, uncertainty increases

 uUyYxXp  101 ,

u



The Door-Sensing Robot
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• Our robot wants to localize itself along the corridor

• It can detect when it is in front of a door

• Observation of door increases the likelihood of x at doors

 xXyYp  11

 1:01:01:01:01 , uUyYxXp 



The Door-Sensing Robot
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• Our robot wants to localize itself along the corridor

• It can detect when it is in front of a door

• Robot moves: state is propagated, uncertainty increases

 2:02:01:01:02 , uUyYxXp 

u



Base Case
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• Assume we have initial prior that predicts state in absence of any 
evidence: 

• At the first frame, correct this given the value of Y0=y0
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• How to obtain                                     from                                           ?
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Recursive State Estimation
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 1:01:01 ,  ttt uyXp ttt uyXp :0:0 ,

 ttt uyXp :0:0 ,

Marginalizing over Xt

What does this term mean?



• How to obtain                                     ?

• Intuition: If we knew , the state transition
model should tell us how to propagate the state estimate

Recursive State Estimation
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 ttt uyXp :01:0 ,
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• How to obtain                                     ?

Recursive State Estimation
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• Prediction:

• Correction:

Prediction and Correction
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• Prediction:

• Correction:

Predict-Correct Cycle
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Kalman Filter
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• Kalman filters (KFs) instantiate recursive Bayesian filtering for a 
specific class of state transition and observation models

• Linear state transition model with Gaussian noise:

• Linear observation model with Gaussian noise:

• Gaussian initial state estimate:



Kalman Filter Prediction & Correction
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• Efficient closed-form correction and prediction steps which 
involve manipulation of Gaussians

• The state estimate can be represented as a Gaussian distribution

• Prediction:

• Correction: Kalman gain



Kalman Filter 1D Example
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• Let’s make a 1D example

• Prediction:

KF

prediction

old corrected belief

predicted belief

shifted mean

scaled variance + noise

Image courtesy: Thrun, Burgard, Fox 2005



Kalman Filter 1D Example
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• Let’s make a 1D example

• Correction:

KF

correction

observation
corrected belief

weighted mean

obs. noise determines update strength

Image courtesy: Thrun, Burgard, Fox 2005



Kalman Filter Properties
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• Highly efficient: Polynomial in measurement dimensionality k
and state dimensionality n: O(k2.376 + n2)

• Optimal for linear Gaussian systems!

• In robotic vision, most models are non-linear!



Extended Kalman Filter (EKF)
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• Non-linear state-transition model with Gaussian noise:

• Non-linear observation model with Gaussian noise:

• How to cope with non-linear system?

• Idea: linearize the models in each time step



Gaussian Propagation for Linear Models
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Image courtesy: Thrun, Burgard, Fox 2002

• Gaussians propagate exactly through a linear function



Gaussian Propagation for Non-Linear Models
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Image courtesy: Thrun, Burgard, Fox 2002

• Gaussian state can be coarse approximation in non-linear system



EKF Linearization
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Image courtesy: Thrun, Burgard, Fox 2002

• Gaussian propagation through non-linear function can introduce
bias from best approximating Gaussian



EKF Linearization
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Image courtesy: Thrun, Burgard, Fox 2002

• The larger the uncertainty, the larger errors are introduced



EKF Linearization
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Image courtesy: Thrun, Burgard, Fox 2002

• Good approximation when propagated probability mass covers a 
local regime that is close to linear



EKF Prediction & Correction
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• Efficient approximate correction and prediction steps which 
involve manipulation of Gaussians and linearization

• The state estimate can be represented as a Gaussian distribution

• Prediction:

• Correction:

:

:



Extended Kalman Filter Properties
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• Still highly efficient: Polynomial in measurement dimensionality k
and state dimensionality n: O(k2.376 + n2)

• No optimality guarantees!

• Linearization can be problematic for highly non-linear models
• Different variant: Unscented Kalman Filter (UKF)

• Idea: propagate samples through non-linearity and recover a better 
Gaussian approximation (second-order approximation)



What is a Particle Filter?
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• Gaussians are restrictive for state and noise modelling

• Idea: represent the state estimate by random samples

Video: Choi et al., 2013



Importance Sampling Concept
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• A key concept in particle filters is importance sampling
• We would like to draw samples

from a distribution f

• However, we can only draw from
a different distribution g

• Weight samples of g by f(x)/g(x)

Image courtesy: Thrun, Burgard, Fox 2005



Importance Sampling
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• Objective: Evaluate expectation of a function           w.r.t. a 
probability function 

• Use a proposal distribution          from which it is easy to draw 
samples and which is close in shape to 

• Approximate expectation by a finite sum over samples from 

• With importance weights

Image courtesy: Bishop 2006



The Door-Sensing Robot Resampled
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• Our robot wants to localize itself along the corridor

• It can detect when it is in front of a door

• Initially it knows nothing about its location: uniform  0Xp

 0Xp

Image courtesy: Thrun, Burgard, Fox 2005



• Our robot wants to localize itself along the corridor

• It can detect when it is in front of a door

• Observation of door increases the likelihood of x at doors

The Door-Sensing Robot
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 xXyYp  00

 yYxXp  00

Image courtesy: Thrun, Burgard, Fox 2005



The Door-Sensing Robot

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 38

• Our robot wants to localize itself along the corridor

• It can detect when it is in front of a door

• Robot moves: state is propagated, uncertainty increases

• Samples are resampled and propagated

 uUyYxXp  101 ,

u

Image courtesy: Thrun, Burgard, Fox 2005



The Door-Sensing Robot
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• Our robot wants to localize itself along the corridor

• It can detect when it is in front of a door

• Observation of door increases the likelihood of x at doors

 xXyYp  11

 1:01:01:01:01 , uUyYxXp 

Image courtesy: Thrun, Burgard, Fox 2005



The Door-Sensing Robot
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• Our robot wants to localize itself along the corridor

• It can detect when it is in front of a door

• Robot moves: state is propagated, uncertainty increases

• Samples are resampled and propagated

 2:02:01:01:02 , uUyYxXp 

u

Image courtesy: Thrun, Burgard, Fox 2005



Particle Filter (PF)
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• Non-linear observation and state-transition distributions

• State estimate (full posterior!) represented as a set of weighted 
samples

• The weighted samples a.k.a. particles are propagated and 
updated over time to approximate the full posterior



Sequential Importance Sampling (SIS)
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• Sequential update:

• Particle update:

• Weight update:



SIS Algorithm
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• At each time step t:



Choice of Proposal Distribution
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• If we choose the state transition model as proposal distribution, 
we obtain prediction and correction steps

• Prediction:

• Correction:

• There can be better choices for the proposal distribution which 
take the current observation into account!



Sequential Importance Resampling (SIR)
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• We propagate samples according to the proposal distribution

• Since the proposal distribution mismatches 
the target distribution, samples with high 
accumulated weight can get sparse

• Idea: resample the particles with replacement according to their 
weight (and reset to equal weights afterwards)

• Choose when to resample according to effective sample size



Particle Filter Properties
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• Particle filters can handle arbitrary non-linear observation and 
state-transition distributions

• Easy to implement and to parallelize

• Caveat: curse of dimensionality. In the worst case, number of 
samples to approximate the state distribution grows 
exponentially with number of dimensions



Lessons Learned Today
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• State estimation can be modelled in a probabilistic framework
• Graphical model describes stochastic independence relations 

between random variables
• Probabilistic state transition and observation models

• Recursive Bayesian estimation of the state distribution
• Kalman Filter for linear models with Gaussian noise + Gaussian 

state estimate
• KF is efficient and optimal
• Extended Kalman filter approximate inference for non-linear system
• EKF has no optimality guarantees, quality depends on linear 

approximation
• Particle filters can handle arbitrary non-linear and noise models
• PFs can represent arbitrary state distributions, but curse of 

dimensionality!
• PFs based on importance sampling



Further Reading
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• Probabilistic Robotics textbook

Probabilistic Robotics, 
S. Thrun, W. Burgard, D. Fox, 
MIT Press, 2005
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Thanks for your attention!


