

Robotic 3D Vision

Lecture 3: Probabilistic State Estimation – Filtering

Prof. Dr. Jörg Stückler
Computer Vision Group, TU Munich
http://vision.in.tum.de

What We Will Cover Today

- Probabilistic modelling of state estimation problems
- Bayesian Filtering
- Kalman Filter
- Extended Kalman Filter
- Particle Filter

Why Probabilistic State Estimation?

Why Probabilistic State Estimation?

ROVIO: Robust Visual Inertial Odometry Using a Direct EKF-Based Approach

http://github.com/ethz-asl/rovio

Michael Bloesch, Sammy Omari, Marco Hutter, Roland Siegwart

Probabilistic Model of Time-Sequential Processes

- Hidden state X gives rise to noisy observations Y
- At each time t,
 - the state changes stochastically from X_{t-1} to X_t
 - state change depends on action U_t
 - we get a new observation Y_t

Why Probabilistic State Estimation?

- Probabilistic modelling accounts for uncertainties
- State estimation: Inference in probabilistic model
- Cope with noisy state transitions and observations
- Maintain uncertainty in the state estimate
- Principled approaches to update the state estimate distribution based on probability theory

Recursive Bayesian Filtering

• Our goal: recursively estimate probability distribution of state X_t given all observations seen so far and previous estimate for X_{t-1}

- We assume
 - Knowledge about probability distribution of observations

$$p(Y_t|X_{0:t},U_{0:t},Y_{0:t-1})$$

Knowledge about probabilistic dynamics of state transitions

$$p(X_t|X_{0:t-1},U_{0:t})$$

• Estimate of initial state $p(X_0)$

Markov Assumptions

Only the immediate past matters for a state transition

$$p(X_t|X_{0:t-1},U_{0:t}) = p(X_t|X_{t-1},U_t)$$
 state transition model

Observations depend only on the current state

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

• Initially it knows nothing about its location: uniform $\,p(X_{_0})\,$

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

Observation of door increases the likelihood of x at doors

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

Robot moves: state is propagated, uncertainty increases

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

Observation of door increases the likelihood of x at doors

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

Robot moves: state is propagated, uncertainty increases

Base Case

- Assume we have initial prior that predicts state in absence of any evidence: $p(X_0)$
- At the first frame, correct this given the value of $Y_0 = y_0$

$$p(X_0 | Y_0 = y_0) = \frac{p(y_0 | X_0)p(X_0)}{p(y_0)} \propto p(y_0 | X_0)p(X_0)$$

Posterior prob. of state given observation

Likelihood of observation

Prior of the state

Recursive State Estimation

• How to obtain $p(X_t|y_{0:t},u_{0:t})$ from $p(X_{t-1}|y_{0:t-1},u_{0:t-1})$?

$$\begin{split} p \Big(X_t \big| y_{0:t}, u_{0:t} \Big) \\ &= \frac{p \Big(y_t \,|\, X_t, y_{0:t-1}, u_{0:t} \Big) p \Big(X_t \,|\, y_{0:t-1}, u_{0:t} \Big)}{p \Big(y_t \,|\, y_{0:t-1}, u_{0:t} \Big)} \\ &= \frac{p \Big(y_t \,|\, X_t \Big) p \Big(X_t \,|\, y_{0:t-1}, u_{0:t} \Big)}{p \Big(y_t \,|\, y_{0:t-1}, u_{0:t} \Big)} \\ &= \frac{p \Big(y_t \,|\, X_t \Big) p \Big(X_t \,|\, y_{0:t-1}, u_{0:t} \Big)}{\int p \Big(y_t \,|\, X_t \Big) p \Big(X_t \,|\, y_{0:t-1}, u_{0:t} \Big) dX_t} \quad \text{Marginalizing over } \textbf{\textit{X}}_t \end{split}$$

Recursive State Estimation

- How to obtain $p(X_t|y_{0:t-1},u_{0:t})$?
- Intuition: If we knew $p(X_{t-1}|y_{0:t-1},u_{0:t-1})$, the state transition model should tell us how to propagate the state estimate

Recursive State Estimation

• How to obtain $p(X_t|y_{0:t-1},u_{0:t})$?

$$\begin{split} p(X_{t}|y_{0:t-1}, u_{0:t}) \\ &= \int p(X_{t}, X_{t-1}|y_{0:t-1}, u_{0:t}) dX_{t-1} \\ &= \int p(X_{t}|X_{t-1}, y_{0:t-1}, u_{0:t}) p(X_{t-1}|y_{0:t-1}, u_{0:t}) dX_{t-1} \\ &= \int p(X_{t}|X_{t-1}, u_{t}) p(X_{t-1}|y_{0:t-1}, u_{0:t}) dX_{t-1} \end{split}$$

Markov assumption

Prediction and Correction

• Prediction:

$$p(X_t \mid y_{0:t-1}, u_{0:t}) = \int p(X_t \mid X_{t-1}, u_t) p(X_{t-1} \mid y_{0:t-1}, u_{0:t-1}) dX_{t-1}$$

$$\text{state transition} \quad \text{corrected estimate} \quad \text{model} \quad \text{from previous step}$$

Correction:

observation model

predicted estimate

$$p(X_t | y_0, ..., y_t) = \frac{p(y_t | X_t)p(X_t | y_{0:t-1}, u_{0:t})}{\int p(y_t | X_t)p(X_t | y_{0:t-1}, u_{0:t})dX_t}$$

Predict-Correct Cycle

• Prediction:

$$p(X_{t} | y_{0:t-1}, u_{0:t}) = \int p(X_{t} | X_{t-1}, u_{t}) p(X_{t-1} | y_{0:t-1}, u_{0:t-1}) dX_{t-1}$$

Correction:

$$p(X_t | y_0, ..., y_t) = \frac{p(y_t | X_t)p(X_t | y_{0:t-1}, u_{0:t})}{\int p(y_t | X_t)p(X_t | y_{0:t-1}, u_{0:t})dX_t}$$

Kalman Filter

 Kalman filters (KFs) instantiate recursive Bayesian filtering for a specific class of state transition and observation models

Linear state transition model with Gaussian noise:

$$\mathbf{x}_t = \mathbf{A}_t \mathbf{x}_{t-1} + \mathbf{B}_t \mathbf{u}_t + \boldsymbol{\epsilon} \qquad \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_{d_t})$$

Linear observation model with Gaussian noise:

$$\mathbf{z}_t = \mathbf{C}_t \mathbf{x}_t + oldsymbol{\delta} \sim \mathcal{N}(\mathbf{0}, oldsymbol{\Sigma}_{m_t})$$

• Gaussian initial state estimate: $\mathbf{x}_0 \sim \mathcal{N}(oldsymbol{\mu}_0, oldsymbol{\Sigma}_0)$

Kalman Filter Prediction & Correction

- Efficient closed-form correction and prediction steps which involve manipulation of Gaussians
- The state estimate can be represented as a Gaussian distribution

$$\mathbf{x}_t \sim \mathcal{N}(oldsymbol{\mu}_t, oldsymbol{\Sigma}_t)$$

- Prediction: $m{\mu}_t^- = \mathbf{A}_t m{\mu}_{t-1}^+ + \mathbf{B}_t \mathbf{u}_t$ $m{\Sigma}_t^- = \mathbf{A}_t m{\Sigma}_{t-1}^+ \mathbf{A}_t^ op + m{\Sigma}_{d_t}$
- Correction: $\mathbf{K}_t = \mathbf{\Sigma}_t^- \mathbf{C}_t^\top \left(\mathbf{C}_t \mathbf{\Sigma}_t^- \mathbf{C}_t^\top + \mathbf{\Sigma}_{m_t} \right)^{-1}$ Kalman gain $\boldsymbol{\mu}_t^+ = \boldsymbol{\mu}_t^- + \mathbf{K}_t (\mathbf{y}_t \mathbf{C}_t \boldsymbol{\mu}_t^-)$ $\mathbf{\Sigma}_t^+ = \left(\mathbf{I} \mathbf{K}_t \mathbf{C}_t \right) \mathbf{\Sigma}_t^-$

Kalman Filter 1D Example

- Let's make a 1D example
- Prediction: $\mu_t^- = a_t \mu_{t-1}^+ + b_t u_t$ shifted mean

$$(\sigma_t^-)^2 = a_t^2 (\sigma_{t-1}^+)^2 + \sigma_{d_t}^2 \quad \text{scaled variance + noise}$$

Kalman Filter 1D Example

Let's make a 1D example

$$k_t = \frac{c_t(\sigma_t^-)^2}{c_t^2(\sigma_t^-)^2 + \sigma_{m_t}^2}$$

weighted mean

$$\mu_t^+ = \mu_t^- + k_t (y_t - c_t \mu_t^-) = \frac{\sigma_{m_t}^2 \mu_t^- + c_t^2 (\sigma_t^-)^2 y_t}{\sigma_{m_t}^2 + c_t^2 (\sigma_t^-)^2}$$
$$(\sigma_t^+)^2 = (\sigma_t^-)^2 - k_t c_t (\sigma_t^-)^2 = \frac{\sigma_{m_t}^2 (\sigma_t^-)^2}{\sigma_{m_t}^2 + c_t^2 (\sigma_t^-)^2}$$

obs. noise determines update strength

Kalman Filter Properties

- Highly efficient: Polynomial in measurement dimensionality k and state dimensionality $n: O(k^{2.376} + n^2)$
- Optimal for linear Gaussian systems!
- In robotic vision, most models are non-linear!

Extended Kalman Filter (EKF)

Non-linear state-transition model with Gaussian noise:

$$\mathbf{x}_t = g(\mathbf{x}_{t-1}, \mathbf{u}_t) + \boldsymbol{\epsilon}_t \qquad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{d_t})$$

Non-linear observation model with Gaussian noise:

$$\mathbf{y}_t = h(\mathbf{x}_t) + \boldsymbol{\delta}_t$$
 $\boldsymbol{\delta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{m_t})$

- How to cope with non-linear system?
- Idea: linearize the models in each time step

$$\mathbf{x}_{t} \approx g(\mathbf{x}_{t-1}^{0}, \mathbf{u}_{t}) + \nabla g(\mathbf{x}, \mathbf{u}_{t})|_{\mathbf{x} = \mathbf{x}_{t-1}^{0}} (\mathbf{x}_{t-1} - \mathbf{x}_{t-1}^{0}) + \boldsymbol{\epsilon}_{t}$$

Gaussian Propagation for Linear Models

Gaussians propagate exactly through a linear function

Gaussian Propagation for Non-Linear Models

Gaussian state can be coarse approximation in non-linear system

EKF Linearization

 Gaussian propagation through non-linear function can introduce bias from best approximating Gaussian

Image courtesy: Thrun, Burgard, Fox 2002

EKF Linearization

The larger the uncertainty, the larger errors are introduced

EKF Linearization

 Good approximation when propagated probability mass covers a local regime that is close to linear

Image courtesy: Thrun, Burgard, Fox 2002

EKF Prediction & Correction

- Efficient approximate correction and prediction steps which involve manipulation of Gaussians and linearization
- The state estimate can be represented as a Gaussian distribution

$$\mathbf{x}_t \sim \mathcal{N}(oldsymbol{\mu}_t, oldsymbol{\Sigma}_t)$$

• Prediction:
$$\boldsymbol{\mu}_t^- = g(\boldsymbol{\mu}_{t-1}^+, \mathbf{u}_t)$$

$$\boldsymbol{\Sigma}_t^- = \mathbf{G}_t \boldsymbol{\Sigma}_{t-1}^+ \mathbf{G}_t^\top + \boldsymbol{\Sigma}_{d_t} \qquad \qquad \mathbf{G}_t \coloneqq \left. \nabla g(\mathbf{x}, \mathbf{u}_t) \right|_{\mathbf{x} = \boldsymbol{\mu}_t^+}$$

• Correction:
$$\mathbf{K}_t = \mathbf{\Sigma}_t^- \mathbf{H}_t^\top \left(\mathbf{H}_t \mathbf{\Sigma}_t^- \mathbf{H}_t^\top + \mathbf{\Sigma}_{m_t} \right)^{-1}$$

$$\boldsymbol{\mu}_t^+ = \boldsymbol{\mu}_t^- + \mathbf{K}_t \left(\mathbf{y}_t - h(\boldsymbol{\mu}_t^-) \right) \qquad \mathbf{H}_t := \left. \nabla h(\mathbf{x}) \right|_{\mathbf{x} = \boldsymbol{\mu}_t^-}$$

$$\mathbf{\Sigma}_t^+ = \left(\mathbf{I} - \mathbf{K}_t \mathbf{H}_t \right) \mathbf{\Sigma}_t^-$$

Extended Kalman Filter Properties

- Still highly efficient: Polynomial in measurement dimensionality k and state dimensionality $n: O(k^{2.376} + n^2)$
- No optimality guarantees!
- Linearization can be problematic for highly non-linear models
 - Different variant: Unscented Kalman Filter (UKF)
 - Idea: propagate samples through non-linearity and recover a better Gaussian approximation (second-order approximation)

What is a Particle Filter?

- Gaussians are restrictive for state and noise modelling
- Idea: represent the state estimate by random samples

Importance Sampling Concept

- A key concept in particle filters is importance sampling
 - We would like to draw samples from a distribution f

- However, we can only draw from a different distribution g
- Weight samples of g by f(x)/g(x)

Robotic 3D Vision

Importance Sampling

- Objective: Evaluate expectation of a function $f(\mathbf{z})$ w.r.t. a probability function $p(\mathbf{z})$
- Use a proposal distribution $q(\mathbf{z})$ from which it is easy to draw samples and which is close in shape to $p(\mathbf{z})$
- Approximate expectation by a finite sum over samples from $q(\mathbf{z})$

$$\mathbb{E}[f] = \int f(\mathbf{z}) p(\mathbf{z}) d\mathbf{z} = \int f(\mathbf{z}) \frac{p(\mathbf{z})}{q(\mathbf{z})} q(\mathbf{z}) d\mathbf{z}$$

$$\simeq \frac{1}{L} \sum_{l=1}^{L} \frac{p(\mathbf{z}^{(l)})}{q(\mathbf{z}^{(l)})} f(\mathbf{z}^{(l)})$$

$$p(z)$$

With importance weights

$$w_l = \frac{p(\mathbf{z}^l)}{q(\mathbf{z}^l)}$$

Image courtesy: Bishop 2006

The Door-Sensing Robot Resampled

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

• Initially it knows nothing about its location: uniform $\,p(X_{_0})\,$

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

Observation of door increases the likelihood of x at doors

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

- Robot moves: state is propagated, uncertainty increases
- Samples are resampled and propagated

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

Observation of door increases the likelihood of x at doors

- Our robot wants to localize itself along the corridor
- It can detect when it is in front of a door

- Robot moves: state is propagated, uncertainty increases
- Samples are resampled and propagated

Particle Filter (PF)

Non-linear observation and state-transition distributions

$$p(\mathbf{y}_t \mid \mathbf{x}_t)$$
 $p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_t)$

 State estimate (full posterior!) represented as a set of weighted samples

$$\left\{\mathbf{x}_{0:t}^{i}, w_{t}^{i}\right\}_{i=1}^{N}$$

$$p(\mathbf{x}_{0:t} \mid \mathbf{y}_{0:t}, \mathbf{u}_{1:t}) \approx \sum_{i=1}^{N} w_t^i \delta_{\mathbf{x}_{0:t}^i}(\mathbf{x}_{0:t})$$

 The weighted samples a.k.a. particles are propagated and updated over time to approximate the full posterior

Sequential Importance Sampling (SIS)

$$\mathbb{E}(f(X_{0:t})) = \int_{X_{0:t}} f(\mathbf{x}_{0:t}) p(\mathbf{x}_{0:t} \mid \mathbf{y}_{0:t}, \mathbf{u}_{1:t}) d\mathbf{x}_{0:t}$$

$$= \int_{X_{0:t}} f(\mathbf{x}_{0:t}) \frac{p(\mathbf{x}_{0:t} \mid \mathbf{y}_{0:t}, \mathbf{u}_{1:t})}{q(\mathbf{x}_{0:t} \mid \mathbf{y}_{0:t}, \mathbf{u}_{1:t})} q(\mathbf{x}_{0:t} \mid \mathbf{y}_{0:t}, \mathbf{u}_{1:t}) d\mathbf{x}_{0:t}$$

- Sequential update:
 - Particle update: $\mathbf{x}_t^i \sim q(\mathbf{x}_t \mid \mathbf{x}_{t-1}^i, \mathbf{y}_t, \mathbf{u}_t)$

• Weight update: $w_t^i = w_{t-1}^i rac{p(\mathbf{y}_t|\mathbf{x}_t^i)\,p(\mathbf{x}_t^i|\mathbf{x}_{t-1}^i,\mathbf{u}_t)}{q(\mathbf{x}_t|\mathbf{x}_{t-1}^i,\mathbf{y}_t,\mathbf{u}_t)}$

SIS Algorithm

At each time step t:

$$\begin{split} \eta &= 0 \\ \text{for} \quad i &= 1 {:} N \\ & \quad \mathbf{x}_t^i \sim q(\mathbf{x}_t \mid \mathbf{x}_{t-1}^i, \mathbf{y}_t, \mathbf{u}_t) \\ & \quad w_t^i = w_{t-1}^i \frac{p(\mathbf{y}_t \mid \mathbf{x}_t^i) \; p(\mathbf{x}_t^i \mid \mathbf{x}_{t-1}^i, \mathbf{u}_t)}{q(\mathbf{x}_t \mid \mathbf{x}_{t-1}^i, \mathbf{y}_t, \mathbf{u}_t)} \\ & \quad \eta &= \eta + w_t^i \\ \text{end} \\ \text{for} \quad i &= 1 {:} N \\ & \quad w_t^i = w_t^i / \eta \\ \text{end} \end{split}$$

Choice of Proposal Distribution

 If we choose the state transition model as proposal distribution, we obtain prediction and correction steps

• Prediction:
$$\mathbf{x}_t^i \sim p(\mathbf{x}_t \mid \mathbf{x}_{t-1}^i, \mathbf{u}_t)$$

• Correction:
$$w_t^i = w_{t-1}^i p(\mathbf{y}_t \mid \mathbf{x}_t^i)$$

 There can be better choices for the proposal distribution which take the current observation into account!

Sequential Importance Resampling (SIR)

- We propagate samples according to the proposal distribution
- Since the proposal distribution mismatches the target distribution, samples with high accumulated weight can get sparse

- Idea: resample the particles with replacement according to their weight (and reset to equal weights afterwards)
- Choose when to resample according to effective sample size

$$N_{eff} = \frac{1}{\sum_{i=1}^{N} (w_t^i)^2}$$

Particle Filter Properties

- Particle filters can handle arbitrary non-linear observation and state-transition distributions
- Easy to implement and to parallelize
- Caveat: curse of dimensionality. In the worst case, number of samples to approximate the state distribution grows exponentially with number of dimensions

Lessons Learned Today

- State estimation can be modelled in a probabilistic framework
 - Graphical model describes stochastic independence relations between random variables
 - Probabilistic state transition and observation models
- Recursive Bayesian estimation of the state distribution
 - Kalman Filter for linear models with Gaussian noise + Gaussian state estimate
 - KF is efficient and optimal
 - Extended Kalman filter approximate inference for non-linear system
 - EKF has no optimality guarantees, quality depends on linear approximation
 - Particle filters can handle arbitrary non-linear and noise models
 - PFs can represent arbitrary state distributions, but curse of dimensionality!
 - PFs based on importance sampling

Further Reading

Probabilistic Robotics textbook

Probabilistic Robotics, S. Thrun, W. Burgard, D. Fox, MIT Press, 2005 Thanks for your attention!