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What We Will Cover Today
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• Probabilistic modelling of state estimation problems

• Examples of observation and state-transition models

• Example: Monte-Carlo Localization

• Short intro to graphical models

• Directed graphical models and factor graphs

• Full posterior optimization

• Non-linear least squares

• Optimization methods

• Tools and frameworks



Recap: Probabilistic Model of Time-Sequential 
Processes
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• Hidden state X gives rise to noisy observations Y

• At each time t, 

• the state changes stochastically from Xt-1 to Xt
• state change depends on action Ut
• we get a new observation Yt

X0 X1

Y0 Y1

Xt

Yt

…

U0 U1 Ut…

…



Recap: Why Probabilistic State Estimation?
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• Probabilistic modelling accounts for uncertainties

• State estimation: Inference in probabilistic model

• Cope with noisy state transitions and observations

• Maintain uncertainty in the state estimate

• Principled approaches to update the state estimate distribution 
based on probability theory 



Recap: Observation and State-Transition Models
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• We assume

• Knowledge about probability distribution of observations

• Knowledge about probabilistic dynamics of state transitions

 ttt UXXp :01:0 ,

 1:0:0:0 ,, tttt YUXYp



• Only the immediate past matters for a state transition

• Observations depend only on the current state

Recap: Markov Assumptions
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state transition model

observation model

X0 X1

Y0 Y1

Xt
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…

U0 U1 Ut…

…



• Prediction:

• Correction:

Recap: Predict-Correct Cycle

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 7

      11:01:011:01:0 ,|,|,|   tttttttttt dXuyXpuXXpuyXp

 
   

    


tttttt

ttttt
tt

dXuyXpXyp

uyXpXyp
yyXp

:01:0

:01:0
0

,||

,||
,,| 

tuty

observation action



Recap: Kalman Filter
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• Kalman filters (KFs) instantiate recursive Bayesian filtering for a 
specific class of state transition and observation models

• Linear state transition model with Gaussian noise:

• Linear observation model with Gaussian noise:

• Gaussian initial state estimate:



Recap: Kalman Filter Prediction & Correction
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• Efficient closed-form correction and prediction steps which 
involve manipulation of Gaussians

• The state estimate can be represented as a Gaussian distribution

• Prediction:

• Correction: Kalman gain



Recap: Extended Kalman Filter (EKF)
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• Non-linear state-transition model with Gaussian noise:

• Non-linear observation model with Gaussian noise:

• How to cope with non-linear system?

• Idea: linearize the models in each time step



Recap: EKF Prediction & Correction
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• Efficient approximate correction and prediction steps which 
involve manipulation of Gaussians and linearization

• The state estimate can be represented as a Gaussian distribution

• Prediction:

• Correction:

:

:



Recap: Particle Filter (PF)
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• Non-linear observation and state-transition distributions

• State estimate (full posterior!) represented as a set of weighted 
samples

• The weighted samples a.k.a. particles are propagated and 
updated over time to approximate the full posterior



Recap: Sampling Importance Resampling (SIR)
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• Sequential update:

• Particle update:

• Weight update:

• Resampling: Draw new particles with replacement with probability 
proportional to weights



SIR Algorithm
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• At each time step t:



Example: Laser-based Monte Carlo Localization
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• Where is the robot (position
and orientation)?

• Indoor environment

• Robot moves on flat ground
(2D plane)

• Laser sensor measures
distance to obstacles in a 2D 
plane

• Known map



Example Observation Model
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• Measurement can be due …

• a known obstacle

• an unexpected obstacle 
(people, furniture, …)

• missing all obstacles (total 
reflection, glass, …).

• Noise is due to uncertainty …

• in measuring distance to known 
obstacle.

• in position of known obstacles.

• in position of additional 
obstacles.

• whether obstacle is missed.
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Example State-Transition Model
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• Velocity-based motion
model of a robot in the
2D plane

• Robot actions:

• Linear velocity

• Rotational velocity

• Actions are executed with uncertainty (f.e. Gaussian noise on 
velocities)

),|( 1 ttt uxxp 
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Initial Estimate
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Observation
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Correction (weight update)
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Prediction (particle update)
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Observation
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Correction (weight update)
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Resampling
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Prediction (particle update)
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Observation
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Correction (weight update)
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Resampling



Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 29

Prediction (particle update)
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Observation
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Correction (weight update)
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Resampling
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Prediction (particle update)
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Observation



Short Recap of Directed Graphical Models
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• What is the probabilistic semantics of a directed graphical 
model?

• Example of a directed graphical model:

X0 X1

Y0 Y1

Xt

Yt

…

U1 Ut…

…



Directed Graphical Models
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• Graph describes factorization of joint probability over random 
variables in terms of conditional probabilities
• Nodes are random variables
• Directed edges encode stochastic dependency relations 

• Bayesian factorization into 
conditional probabilities of 
variables conditioned on their
parents

• Graph needs to be acyclic
• Also called Bayesian network

X0 X1

Y0 Y1

Xt

Yt

…

U1 Ut…

…

        















 







)(,,,
1

1

0

0:0:1:0 







 UpUXXpXYpXpYUXp
tt

ttt



Semantics of Directed Graphical Models
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• A directed graphical model 
expresses stochastic dependency 
relations between random variables

• Node sets X and Y are conditionally 
independent given set Z if Z d-
separates X and Y in the graph:
• Every undirected path between 

nodes in X and Y is blocked by 
nodes in Z

• Path is blocked if there is a node W 
such that either
• W has no converging arrows along 

path and W is in Z
• W has converging arrows along 

path and neither W nor its 
descendants are in Z

X0 X1

Y0 Y1

Xt

Yt

…

U1 Ut…

…

     ZYpZXpZYXp ,

X Y Z

iff



Semantics of Directed Graphical Models
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• A directed graphical model 
expresses stochastic dependency 
relations between random variables

• Node sets X and Y are conditionally 
independent given set Z if Z d-
separates X and Y in the graph:
• Every undirected path between 

nodes in X and Y is blocked by 
nodes in Z

• Path is blocked if there is a node W 
such that either
• W has no converging arrows along 

path and W is in Z
• W has converging arrows along 

path and neither W nor its 
descendants are in Z

X0 X1

Y0 Y1

Xt

Yt

…

U1 Ut…

…
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Semantics of Directed Graphical Models

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 39

• A directed graphical model 
expresses stochastic dependency 
relations between random variables

• Node sets X and Y are conditionally 
independent given set Z if Z d-
separates X and Y in the graph:
• Every undirected path between 

nodes in X and Y is blocked by 
nodes in Z

• Path is blocked if there is a node W 
such that either
• W has no converging arrows along 

path and W is in Z
• W has converging arrows along 

path and neither W nor its 
descendants are in Z

X0 X1

Y0 Y1

Xt

Yt

…

U1 Ut…

…

     ZYpZXpZYXp ,

X Y Z

iff
?



Semantics of Directed Graphical Models
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• A directed graphical model 
expresses stochastic dependency 
relations between random variables

• Node sets X and Y are conditionally 
independent given set Z if Z d-
separates X and Y in the graph:
• Every undirected path between 

nodes in X and Y is blocked by 
nodes in Z

• Path is blocked if there is a node W 
such that either
• W has no converging arrows along 

path and W is in Z
• W has converging arrows along 

path and neither W nor its 
descendants are in Z

X0 Xt-1

Y0 Yt-1

Xt

Yt

…

Ut-1 Ut…

…

     ZYpZXpZYXp ,

X Y Z
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Factor Graphs
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• Factor graphs also describe factorization of joint probability over 
random variables
• Nodes are either random variables (discs) or factors (squares)

• Undirected edges connect variables with factors

• Factors      are non-negative 
functions over variables

• Normalizer Z ensures that 
probability function integrates to 1
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Semantics of Factor Graphs
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• Factor graphs also express 
conditional independence relations
• Two nodes are neighbors if they 

appear in a common factor

• Path: sequence of neighboring 
nodes between two variables

• Node set X is conditionally 
independent from set Y given set Z 
if all paths between nodes in X and 
Y are blocked by some node in Z

• Given the set ne(X) of neighbors of 
X, the variable X is conditionally 
independent from the remaining 
variables 

X0 X1

Y0 Y1

Xt

Yt

…

U1 Ut…
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Semantics of Factor Graphs
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• Factor graphs also express 
conditional independence relations
• Two nodes are neighbors if they 

appear in a common factor

• Path: sequence of neighboring 
nodes between two variables

• Node set X is conditionally 
independent from set Y given set Z 
if all paths between nodes in X and 
Y are blocked by some node in Z

• Given the set ne(X) of neighbors of 
X, the variable X is conditionally 
independent from the remaining 
variables 

X0 X1

Y0 Y1

Xt

Yt
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Factor Graphs and Undirected Graphical Models
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• Another class of graphical models are undirected graphical 
models
• Nodes are random variables (discs)

• Undirected edges connect variables

• Undirected graphical models can be represented by factor graphs
• Each factor node in a factor graph connects the cliques in an 

undirected graphical model

X0 X1

Y0 Y1

Xt

Yt

…

U1 Ut…

…

f2 f2 f2

f1 f1 f1

f0
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…

U1 Ut…
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Factor Graphs vs. Directed Graphical Models
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• In general, neither factor graphs nor directed graphical 
models can represent conditional independence relations of 
arbitrary probability distributions

• Both types of graphs have different expressiveness

• Examples on blackboard



Factor Graphs vs. Undirected Graphical Models
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• Factor graphs and undirected graphical models have same 
expressiveness in terms of conditional independencies

• However, factor graphs can represent different granularities 
of factorizations for the same conditional dependencies

• Example on blackboard



Full State Posterior
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• In filtering, we only consider most recent observation and action

• While Kalman filters are optimal for linear models and Gaussian 
noise, any approximation (EKF, PF, etc.) will introduce errors

• Can we perform inference for the full state          given all 
observations        and actions         so far?

 ttt YUXp :0:0:0 ,

X0 X1

Y0 Y1

Xt

Yt

…

U0 U1 Ut…

…

full state posterior

tX :0

tY :0 tU :0



Full State Posterior Factorization
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• The full state posterior factorizes into a product of observation 
likelihoods, state-transition likelihoods and the initial state 
distribution
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Full State Posterior – Non-Linear Gaussian Case
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• Non-linear state-transition model with Gaussian noise:

• Non-linear observation model with Gaussian noise:

• Gaussian initial state estimate:
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• We obtain the following factorization into normal distributions

• Recap: multivariate normal distribution

• How can we find the maximum a-posteriori estimate for         ?

Full State Posterior – Non-Linear Gaussian Case
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Negative Log-Posterior
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• Since the logarithm is a monotonic increasing function, we can 
minimize the negative log-posterior probability instead

• The exponential functions vanish

• The normalization factors are independent of the state variables 
and can be subsumed in a constant

• Constants do not contribute to the minimization problem

• Quadratic function in non-linear residuals on  

• Non-linear least squares problem!



Non-Linear Least Squares
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• We can rewrite the negative log-posterior as a non-linear least 
squares problem:

• Stack residuals in residual vector      

• Inverse covariances in block-diagonal weight matrix

• Optimization approaches:
• Gradient descent

• Gauss-Newton

• Levenberg-Marquardt

• etc.



Gradient Descent

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 53

• Idea 1: Perform gradient descent to minimize E(x)

• Pros:
• Stable convergence for sufficiently small step size

• Cons:
• Slow convergence (linear convergence rate)

• Solution quality depends on initial guess



Gauss-Newton Method
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• Idea 2: Approximate Newton’s method to minimize E(x)
• Approximate E(x) through linearization of residuals

• Find root of                                                          using Newton’s method, i.e.

• Pros:
• Faster convergence (approx. quadratic convergence rate)

• Cons:
• Divergence if too far from local optimum (H not positive definite)
• Solution quality depends on initial guess



Levenberg-Marquardt Method
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• Idea 3: Gradually switch between gradient descent and Gauss-Newton
• Augment Hessian approximation of Gauss-Newton (damping)

• Adaptive weighting:

• Start with 
• Accept step and decrease lambda                    if error function decreases, 

otherwise discard step and increase lambda                  (akin line search)

• Pros:
• Fast convergence close to local optimum (quadratic convergence rate close to 

optimum)
• More stable but slow convergence far from local optimum

• Cons:
• Solution quality depends on initial guess



Iteratively Reweighted Least Squares
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• Adaptive weights allow for approximately optimizing other 
norms on the residual function

• Example: for any       norm, we need to set



Why Filter?
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• Runtime depends polynomially on time (inversion of the Hessian)

• Estimating the full state posterior can become prohibitively slow

• Typical current approaches bound the runtime by 
approximations:
• Selection and optimization of keyframes to limit the optimization 

window size (subsampling)
• Marginalization of old states to keep number of optimized frames 

constant
• In fact, marginalization of all old states but the current one 

corresponds to Kalman Filtering in the Gaussian noise case

• We will see approximations to full posterior optimization later in 
more detail in concrete examples



Tools and Frameworks

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 58

• C++
• ceres (http://ceres-solver.org/) 

• g2o (https://github.com/RainerKuemmerle/g2o)

• Matlab
• Optimization toolbox (e.g. lsqnonlin)

• Python
• lmfit

• scipy.optimize.curve_fit



Lessons Learned Today
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• Directed graphical models and factor graphs describe stochastic 
conditional independence relations of joint probability 
distributions 

• Full state posterior factorizes into conditional observation and 
state-transition likelihoods per time step

• Negative log-posterior leads to non-linear least squares in the 
case of Gaussian noise

• Levenberg-Marquardt method for robust pseudo second-order 
optimization of non-linear least squares problems

• Runtime of full posterior optimization grows polynomially with 
time

• Approximations will be needed
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Thanks for your attention!


