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What We Will Cover Today
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• Lie algebra se(3)

• Introduction to and definition of visual odometry

• Indirect vs. direct methods

• Indirect methods

• 2D-to-2D motion estimation

• 2D-to-2D monocular visual odometry



Recap: Geometric Point Primitives
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2D 3D

• Point

• Augmented
vector

• Homogeneous
coordinates



Recap: Euclidean Transformations
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• Euclidean transformations apply rotation
and translation

• Rigid-body motion: preserves distances and angles when
applied to points on a body



Recap: Special Orthogonal Group SO(n)
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• Rotation matrices have a special structure

i.e. orthonormal matrices that preserve distance and orientation

• They form a group which we denote as Special Orthogonal Group              
• The group operator is matrix multiplication - associative, but not 

commutative!
• Inverse and neutral element exist

• 2D rotations only have 1 degree of freedom (DoF), i.e. angle of
rotation

• 3D rotations have 3 DoFs, several parametrizations exist such as Euler 
angles and quaternions



Recap: Special Euclidean Group SE(n)
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• Euclidean transformation matrices have a special structure as
well:

• Translation      has 3 degrees of freedom

• Rotation                         has 3 degrees of freedom

• They also form a group which we denote as Special Euclidean
Group             . The group operator is matrix multiplication:



• is a Lie group, i.e. a smooth manifold with compatible operator, 

inverse and neutral element

• Its Lie algebra            provides an elegant way to parametrize poses for 

optimization

• Its elements                  form the tangent space of         at  at identity 

• The           elements can be interpreted as rotational and translational 

velocities (twists) 

Robotic 3D Vision

Lie algebra

Lie group log

exp

Representing Motion using Lie Algebra se(3)
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• Let‘s look at rotations first and assume time-continuous motion

• We know that

• Taking the derivative for time yields

• This means there exists a skew-symmetric matrix
such that

• Assume constant and                  

• We write
for infinitesimal

• Hence, we can write

• This series yields the matrix exponential

• Matrix exponential has closed-form solution (Rodriguez formula)

• corresponds to minimal axis-angle representation

Robotic 3D Vision

Insights into se(3)
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• For continuous rigid-body motion we can write

• For constant the differential equation has a unique solution:

• For initial condition , we have

• To reduce clutter in notation, we will absorb into and

Robotic 3D Vision

Further Insights into se(3)
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Robotic 3D Vision

Lie group

Lie algebra

log

exp

• The exponential map finds transformation matrices for twists:

Exponential Map of SE(3)
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Robotic 3D Vision

Lie group

Lie algebra

• The logarithm map finds twists for transformation matrices:

log

exp

Logarithm Map of SE(3)
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Robotic 3D Vision

• Let’s define the following notation:

• Inv. of hat operator:

• Conversion:                                             ,

• Pose inversion:

• Pose concatenation:

• Pose difference:

Some Notation for Twist Coordinates
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Robotic 3D Vision

camera matrix

world coordinates
image pixel coordinates
focal length
camera center

(normalized image coordinates)
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Recap: Pinhole Camera Model
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Recap: Camera Extrinsics

• Euclidean transformations (                      ) between camera 
view poses and world frame 



• Normalized image coordinates:

• Pixel coordinates:
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Warping Function



Recap: What is Visual Odometry?
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Visual odometry (VO)… 

• … is a variant of tracking

• Track the current pose, i.e. position and orientation, of the 
camera with respect to the environment from its images

• Only considers a limited set of recent images for real-time 
constraints

• … involves a data association problem

• Motion is estimated from corresponding 
interest points or pixels in images, or by 
correspondences towards a local 3D 
reconstruction



Recap: What is Visual Odometry?
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Visual odometry (VO)… 

• … is prone to drift due to its 
local view

• … is primarily concerned 
with estimating camera 
motion

• 3D reconstruction often a 
“side product”. If estimated, 
it is only locally consistent



Visual Odometry Example
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Visual Odometry Example
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Notion of Visual Odometry
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• Odometry: 

• Greek: „hodos“ – path, „metron“ – measurement

• Motion or position estimation from
measurements or controls

• Typical example: wheel encoders

• Visual Odometry:

• 1980-2004: Prominent research by NASA JPL for
Mars exploration rovers (Spirit and Opportunity in 
2004) 

• David Nister‘s „Visual Odometry“ paper from 2004 
about keypoint-based methods for monocular and
stereo cameras

Image source: NASA, [Cheng et al., RAM, 2006]



Why Visual Odometry?
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• VO is often used to complement other motion sensors

• GPS

• Inertial Measurement Units (IMUs)

• Wheel odometry

• etc.

• VO typically is more accurate than wheel odometry and not prone to
wheel slippage

• VO is important in GPS-denied environments (indoors, close to
buildings, etc.)



Sensors for Visual Odometry
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• Monocular cameras
• Pros: Low-power, light-weight, low-cost, simple to

calibrate and use

• Cons: requires motion parallax and texture, scale not 
observable

• Stereo cameras
• Pros: depth without motion, less power than active

structured light

• Cons: requires texture, accuracy depends on baseline, 
resolution, synchronization and extrinsic calibration of the
cameras

• Active RGB-D sensors
• Pros: no texture needed (geometric alignment), similar to

stereo processing

• Cons: active sensing consumes power, blackbox depth
estimation

Image source: IDS, PointGrey, ASUS



Definition of Visual Odometry
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• Visual odometry is the process of estimating the egomotion of an 
object (robot) using visual inputs from cameras on the object (robot)

• Inputs: images at discrete time steps ,

• Monocular case: Set of images
• Stereo case: Left/right images ,    /
• RGB-D case: Color/depth images /                                ,

• Output: Transformation estimate of camera frame to world
frame

• Camera pose integrated up from relative pose estimates
• Example: camera pose from frame-to-frame 

transformations



Recap: Indirect vs. Direct Methods
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Indirect Direct

Input images Input images

Track: min. reprojection
error (point distances)

Map: estimate keypoint
parameters (f.e. 3D 
coordinates)

Track: min. photometric/ 
geometric error pixel-wise

Map: estimate per-pixel 
depth from
photoconsistency

Extract and match
keypoints (SIFT,BRIEF,…)



Indirect vs. Direct VO Methods
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• Direct visual odometry methods formulate alignment objective in terms
of pixel-wise error (e.g. photometric or geometric error)

• Two-view case with known depth:

• Indirect visual odometry methods formulate alignment objective in 
terms of reprojection error of geometric primitives (e.g. points, lines)

• Two-view case with known depth:

• : sets of primitives (e.g. keypoints) in image 1 and 2   



Indirect Visual Odometry Example
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LibVISO2, Geiger et al., StereoScan: Dense 3D Reconstruction in Real-time, IV 2011



Indirect Visual Odometry Pipeline
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• Keypoint detection and 
local description

• Robust keypoint
matching

• Motion estimation
• 2D-to-2D: motion from

image correspondences

• 2D-to-3D: motion from
image to local 3D 
correspondences

• 3D-to-3D: motion from
local 3D 
correspondences
(f.e. stereo, RGB-D)

Images from Jakob Engel



2D-to-2D Motion Estimation

• Given corresponding image point observations

of unknown 3D points
(expressed in camera frame at time t)
determine relative motion between frames

• Naive try: minimize reprojection error using least squares

• Convexity? Uniqueness (scale-ambiguity)? 

• Alternative algebraic approach
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Recap: Essential Matrix

• The rays to the 3D point and the baseline t   are coplanar

• The essential matrix captures the relative camera pose

• Each point correspondence provides an „epipolar constraint“

• 5 correspondences suffice to determine (simpler: 8-point algorithm)
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Fundamental Matrix

• The rays to the 3D point and the baseline t   are coplanar

• The fundamental matrix captures the relative 
camera pose and camera intrinsics

• Each point correspondence provides an „epipolar constraint“

• Can be estimated from at least 7 point correspondences
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Some Properties of E and F

• is a fundamental matrix iff

• is an essential matrix iff and its
non-zero singular values are equal

• is a normalized esssential matrix iff
and its non-zero singular values are 1

• (Normalized) essential space: set of all (normalized) essential 
matrices
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Eight-Point Algorithm

• First proposed by Longuet and Higgins, Nature 1981

• Algorithm:

1. Rewrite epipolar constraints as a linear system of equations

using Kronecker product and

2. Apply singular value decomposition (SVD) on                             and 
unstack the 9th column of into

3. Project the approximate into the (normalized) essential space: 

Determine the SVD of with

and replace the singular values with to find
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Eight-Point Algorithm cont.

• Algorithm (cont.):

• Determine one of the following 4 possible solutions that
intersects the points in front of both cameras:

• A derivation of the eight-point algorithm can be found in the
MASKS textbook, Ch. 5

• Algebraic solution does not minimize reprojection error

• Refine using non-linear least-squares of reprojection error
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Error Metric of the Eight-Point Algorithm

• What is the physical meaning of the error minimized by the
eight-point algorithm?

• The eight-point algorithm finds E that minimizes

subject to through the SVD on A

• We find a least squares fit to the epipolar constraints

• Each epipolar constraint measures the volume spanned by y, t, 
and Ry‘
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Notes on Eight-Point Algorithm

• Points need to be in „general position“ to recover unique E: 
certain degenerate configurations exists (f.e. points on a plane, 
specific quadratic surfaces)

• No translation, ideally:

• But: for small translations, signal-to-noise ratio of image
parallax may be problematic: „spurious“ pose estimate

• Non-linear 5-point algorithm with up to 10 (possibly complex) 
solutions (D. Nister, An Efficient Solution to the Five-Point 
Relative Pose Problem, CVPR 2004)

Robotic 3D Vision Prof. Dr. Jörg Stückler, Computer Vision Group, TUM35



Normalized Eight-Point Algorithm

• Hartley, In Defense of the 8-Point Algorithm, IEEE PAMI 1997

• can be numerically ill-conditioned when estimating the
fundamental matrix with the eight-point algorithm naively

• Noise attenuates stronger in large pixel coordinates (quadratic
dependency) 

• Least squares (SVD) more sensitive to noise in large coordinates

• „Imbalanced“ since pixel coordinates start at (0,0)
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Normalized Eight-Point Algorithm

• Popular approach: Normalize coordinates to zero mean and 
standard deviation in each image separately

• Find       and        to normalize pixel coordinates

Robotic 3D Vision Prof. Dr. Jörg Stückler, Computer Vision Group, TUM37



Normalized Eight-Point Algorithm

• Apply eight-point algorithm on normalized coordinates with
epipolar constraints

• Recover from
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Eight-Point Algorithm for F

• Calibrated case: we know camera intrinsics, we can estimate E

• Uncalibrated case: we do not know camera intrinsics, we can
only estimate F

• In the uncalibrated case, rotation and translation can not be
recovered from F due to the unknown camera intrinsics
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Further Reading
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• MASKS and MVG textbooks

An Invitation to 3D 
Vision, 
Y. Ma, S. Soatto, J. 
Kosecka, and S. S. 
Sastry, 
Springer, 2004

Multiple View 
Geometry in 
Computer Vision, 
R. Hartley and A. 
Zisserman, 
Cambridge 
University Press, 
2004

MVGMASKS



Lessons Learned Today
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• Visual odometry is the process of estimating ego-motion using 
onboard visual sensors

• Indirect methods extract and match geometric primitives such as 
keypoints

• Direct methods directly operate on the pixel level

• Motion estimation from 2D-to-2D image correspondences

• (Normalized) eight-point algorithm for estimating the essential and 
fundamental matrix
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Thanks for your attention!


