Robotic 3D Vision

Lecture 5: Visual Odometry 2 Indirect Methods cont.

Prof. Dr. Jörg Stückler
Computer Vision Group, TU Munich
http://vision.in.tum.de

What We Will Cover Today

- Indirect visual odometry methods
- 2D-to-3D motion estimation
- 2D-to-3D visual odometry
- 3D-to-3D motion estimation
- 3D-to-3D visual odometry
- Properties of keypoint detection and matching
- Robustness and uncertainty propagation
- Probabilistic modelling

Recap: Special Euclidean Group SE(n)

- Euclidean transformation matrices have a special structure:

$$
\mathbf{T}=\left(\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right) \in \mathbf{S E}(3) \subset \mathbb{R}^{4 \times 4}
$$

- Translation \mathbf{t} has 3 degrees of freedom
- Rotation $\mathbf{R} \in \mathbf{S O}(3)$ has 3 degrees of freedom
- They also form a group which we denote as Special Euclidean Group $\mathrm{SE}(3)$. The group operator is matrix multiplication:

$$
\begin{aligned}
\cdot: \mathbf{S E}(3) \times \mathbf{S E}(3) & \rightarrow \mathbf{S E}(3) \\
\mathbf{T}_{B}^{A} \cdot \mathbf{T}_{C}^{B} & \mapsto \mathbf{T}_{C}^{A}
\end{aligned}
$$

Recap: Representing Motion using Lie Algebra se(3)

- $\mathbf{S E}(3)$ is a Lie group, i.e. a smooth manifold with compatible operator, inverse and neutral element
- Its Lie algebra se(3) provides an elegant way to parametrize poses for optimization
- Its elements $\widehat{\boldsymbol{\xi}} \in \mathbf{s e}(3)$ form the tangent space of $\mathbf{S E}(3)$ at identity
- The se(3) elements can be interpreted as rotational and translational velocities (twists)

Recap: Exponential Map of SE(3)

- The exponential map finds transformation matrices for twists:

$$
\begin{gathered}
\exp (\widehat{\boldsymbol{\xi}})=\left(\begin{array}{cc}
\exp (\widehat{\boldsymbol{\omega}}) & \mathbf{A v} \\
\mathbf{0} & 1
\end{array}\right) \\
\exp (\widehat{\boldsymbol{\omega}})=\mathbf{I}+\frac{\sin |\omega|}{|\omega|} \widehat{\boldsymbol{\omega}}+\frac{1-\cos |\omega|}{|\omega|^{2}} \widehat{\boldsymbol{\omega}}^{2} \quad \mathbf{A}=\mathbf{I}+\frac{1-\cos |\omega|}{|\omega|^{2}} \widehat{\boldsymbol{\omega}}+\frac{|\omega|-\sin |\omega|}{|\omega|^{3}} \widehat{\boldsymbol{\omega}}^{2}
\end{gathered}
$$

Recap: Logarithm Map of SE(3)

- The logarithm map finds twists for transformation matrices:

$$
\begin{gathered}
\log (\mathbf{T})=\left(\begin{array}{cc}
\log (\mathbf{R}) & \mathbf{A}^{-1} \mathbf{t} \\
0 & 0
\end{array}\right) \\
\log (\mathbf{R})=\frac{|\omega|}{2 \sin |\omega|}\left(\mathbf{R}-\mathbf{R}^{T}\right) \quad|\omega|=\cos ^{-1}\left(\frac{\operatorname{tr}(\mathbf{R})-1}{2}\right)
\end{gathered}
$$

Recap: Some Notation for Twist Coordinates

- Let's define the following notation:
- Inv. of hat operator: $\left(\begin{array}{cccc}0 & -\omega_{3} & \omega_{2} & v_{1} \\ \omega_{3} & 0 & -\omega_{1} & v_{2} \\ -\omega_{2} & \omega_{1} & 0 & v_{3} \\ 0 & 0 & 0 & 0\end{array}\right)^{\vee}=\left(\omega_{1} \omega_{2} \omega_{3} v_{1} v_{2} v_{3}\right)^{\top}$
- Conversion: $\boldsymbol{\xi}(\mathbf{T})=(\log (\mathbf{T}))^{\vee} \quad \mathbf{T}(\boldsymbol{\xi})=\exp (\hat{\boldsymbol{\xi}})$
- Pose inversion: $\boldsymbol{\xi}^{-1}=\log \left(\mathbf{T}(\boldsymbol{\xi})^{-1}\right)^{\vee}=-\boldsymbol{\xi}$
- Pose concatenation: $\boldsymbol{\xi}_{1} \oplus \boldsymbol{\xi}_{2}=\left(\log \left(\mathbf{T}\left(\boldsymbol{\xi}_{2}\right) \mathbf{T}\left(\boldsymbol{\xi}_{1}\right)\right)\right)^{\vee}$
- Pose difference: $\boldsymbol{\xi}_{1} \ominus \boldsymbol{\xi}_{2}=\left(\log \left(\mathbf{T}\left(\boldsymbol{\xi}_{2}\right)^{-1} \mathbf{T}\left(\boldsymbol{\xi}_{1}\right)\right)\right)^{\vee}$

Recap: Warping Function

- Normalized image coordinates:

$$
\omega\left(\mathbf{y}^{\prime}, \boldsymbol{\xi}, Z\left(\mathbf{y}^{\prime}\right)\right)=\pi\left(\mathbf{T}(\boldsymbol{\xi}) \overline{Z\left(\mathbf{y}^{\prime}\right) \overline{\mathbf{y}}^{\prime}}\right)
$$

- Pixel coordinates:

$$
\omega\left(\mathbf{y}_{p}^{\prime}, \boldsymbol{\xi}, Z\left(\mathbf{y}_{p}^{\prime}\right)\right)=\mathbf{C} \pi\left(\mathbf{T}(\boldsymbol{\xi}) \overline{Z\left(\mathbf{y}_{p}^{\prime}\right) \mathbf{C}^{-1} \overline{\mathbf{y}}_{p}^{\prime}}\right)
$$

Recap: Sensors for Visual Odometry

- Monocular cameras
- Pros: Low-power, light-weight, low-cost, simple to calibrate and use
- Cons: requires motion parallax and texture, scale not observable

- Stereo cameras
- Pros: depth without motion, less power than active structured light
- Cons: requires texture, accuracy depends on baseline, resolution, synchronization and extrinsic calibration of the cameras
- Active RGB-D sensors
- Pros: measures geometry directly (geometric alignment), similar to stereo processing
- Cons: active sensing consumes power, blackbox depth estimation

Recap: Definition of Visual Odometry

- Visual odometry is the process of estimating the egomotion of an object (robot) using visual inputs from cameras on the object (robot)
- Inputs: images at discrete time steps t,
- Monocular case: Set of images $I_{0: t}=\left\{I_{0}, \ldots, I_{t}\right\}$
- Stereo case: Left/right images $I_{0: t}^{l}=\left\{I_{0}^{l}, \ldots, I_{t}^{l}\right\} / I_{0: t}^{r}=\left\{I_{0}^{r}, \ldots, I_{t}^{r}\right\}$
- RGB-D case: Color/depth images $I_{0: t}=\left\{I_{0}, \ldots, I_{t}\right\} / Z_{0: t}=\left\{Z_{0}, \ldots, Z_{t}\right\}$
- Output: Transformation estimate $\mathrm{T}_{t} \in \mathrm{SE}(\mathbf{3})$ of camera frame to world frame
- Camera pose integrated up from relative pose estimates
- Example: camera pose $\mathbf{T}_{t}=\mathbf{T}_{0} \mathbf{T}_{1}^{0} \cdots \mathbf{T}_{t}^{t-1}$ from frame-to-frame transformations \mathbf{T}_{t}^{t-1}

Recap: Indirect vs. Direct VO Methods

- Direct visual odometry methods formulate alignment objective in terms of pixel-wise error (e.g. photometric or geometric error)
- Two-view case with known depth:

$$
p\left(I_{2} \mid I_{1}, Z_{1}, \boldsymbol{\xi}\right) \longrightarrow E(\boldsymbol{\xi})=\int_{\mathbf{y} \in \boldsymbol{\Omega}}\left|I_{1}(\mathbf{y})-I_{2}\left(\omega\left(\mathbf{y}, \boldsymbol{\xi}, Z_{1}(\mathbf{y})\right)\right)\right| d \mathbf{y}
$$

- Indirect visual odometry methods formulate alignment objective in terms of reprojection error of geometric primitives (e.g. points, lines)
- Two-view case with known depth:
$p\left(\mathcal{Y}_{2} \mid \mathcal{Y}_{1}, Z_{1}, \boldsymbol{\xi}\right) \longrightarrow E(\boldsymbol{\xi})=\sum_{i}\left|\mathbf{y}_{2, i}-\omega\left(\mathbf{y}_{1, i}, \boldsymbol{\xi}, Z_{1}\left(\mathbf{y}_{1, i}\right)\right)\right|$
- $\mathcal{Y}_{1}, \mathcal{Y}_{2}$: sets of primitives (e.g. keypoints) in image 1 and 2

Recap: 2D-to-2D Motion Estimation

- Given corresponding image point observations

$$
\begin{aligned}
& \mathcal{Y}_{t}=\left\{\mathbf{y}_{t, 1}, \ldots, \mathbf{y}_{t, N}\right\} \\
& \mathcal{Y}_{t-1}=\left\{\mathbf{y}_{t-1,1}, \ldots, \mathbf{y}_{t-1, N}\right\} \\
& \text { of unknown 3D points } \mathcal{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}
\end{aligned}
$$

 (expressed in camera frame at time t) determine relative motion \mathbf{T}_{t}^{t-1} between frames

- Naive try: minimize reprojection error using least squares

$$
E\left(\mathbf{T}_{t}^{t-1}, \mathcal{X}\right)=\sum_{i=1}^{N}\left\|\overline{\mathbf{y}}_{t, i}-\pi\left(\overline{\mathbf{x}}_{i}\right)\right\|_{2}^{2}+\left\|\overline{\mathbf{y}}_{t-1, i}-\pi\left(\mathbf{T}_{t}^{t-1} \overline{\mathbf{x}}_{i}\right)\right\|_{2}^{2}
$$

- Convexity? Uniqueness (scale-ambiguity)?
- Alternative algebraic approach

Recap: Eight-Point Algorithm

- First proposed by Longuet and Higgins, Nature 1981
- Algorithm:

1. Rewrite epipolar constraints as a linear system of equations

$$
\widetilde{\mathbf{y}}_{i}^{\top} \mathbf{E} \widetilde{\mathbf{y}}_{i}^{\prime}=\mathbf{a}_{i} \mathbf{E}_{s}=0 \longrightarrow \mathbf{A} \mathbf{E}_{s}=\mathbf{0} \quad \mathbf{A}=\left(\mathbf{a}_{1}^{\top}, \ldots, \mathbf{a}_{N}^{\top}\right)^{\top}
$$

using Kronecker product $\mathbf{a}_{i}=\widetilde{\mathbf{y}}_{i} \otimes \widetilde{\mathbf{y}}_{i}^{\prime}$ and $\mathbf{E}_{s}=\left(e_{11}, e_{12}, e_{13}, \ldots, e_{33}\right)^{\top}$
2. Apply singular value decomposition (SVD) on $A=U_{A} S_{A} V_{A}^{\top}$ and unstack the 9th column of V_{A} into $\widetilde{\mathrm{E}}$
3. Project the approximate $\widetilde{\mathbf{E}}$ into the (normalized) essential space: Determine the SVD of $\widetilde{\mathbf{E}}=\mathbf{U} \operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) \mathbf{V}^{\top}$ with $\mathbf{U}, \mathbf{V} \in \mathbf{S O}(3)$ and replace the singular values $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}$ with $1,1,0$ to find

$$
\mathbf{E}=\mathbf{U} \operatorname{diag}(1,1,0) \mathbf{V}^{\top}
$$

Recap: Error Metric of the Eight-Point

Algorithm

- What is the physical meaning of the error minimized by the eight-point algorithm?
- The eight-point algorithm finds E that minimizes

$$
\operatorname{argmin}_{\mathbf{E}_{s}}\left\|\mathbf{A E}_{s}\right\|_{2}^{2}
$$

subject to $\left\|\mathbf{E}_{s}\right\|_{2}^{2}=1$ through the SVD on A

- We find a least squares fit to the epipolar constraints
- A violated epipolar constraint

$$
\tilde{\mathbf{y}}^{\top}\left(\mathbf{t} \times \mathbf{R} \widetilde{\mathbf{y}}^{\prime}\right)=0
$$

quantifies the volume spanned by y, t, and $R y^{\prime}$

- No clear interpretation in terms of distance or angular error

Triangulation

Triangulation

- Goal: Reconstruct 3D point $\widetilde{\mathbf{x}}=(x, y, z, w)^{\top} \in \mathbb{P}^{3}$ from 2D image observations $\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}\right\}$ for known camera poses $\left\{\mathbf{T}_{1}, \ldots, \mathbf{T}_{N}\right\}$
- Linear solution: Find 3D point such that reprojections equal its projections

$$
\mathbf{y}_{i}^{\prime}=\pi\left(\mathbf{T}_{i} \widetilde{\mathbf{x}}\right)=\binom{\frac{r_{11} x+r_{12} y+r_{13} z+t_{x} w}{r_{3} 11+r_{23} y+r_{33} z+t_{z} w}}{\frac{r_{21} x+r_{22} y+r_{23} z+t_{y} w}{r_{31} x+r_{32} y+r_{33} z+t_{z} w}}
$$

- Each image provides one constraint $\mathbf{y}_{i}-\mathrm{y}_{i}^{\prime}=0$
- Leads to system of linear equations $\mathbf{A} \widetilde{\mathrm{x}}=0$, two approaches:
- Set $w=1$ and solve nonhomogeneous system
- Find nullspace of A using SVD
- Non-linear solution: Minimize least squares reprojection error (more accurate)

$$
\min _{\mathrm{x}}\left\{\sum_{i=1}^{N}\left\|\mathbf{y}_{i}-\mathbf{y}_{i}^{\prime}\right\|_{2}^{2}\right\}
$$

Relative Scale Recovery

- Problem: each subsequent frame-pair gives another solution for the reconstruction scale
- Approach:
- Triangulate corresponding image points $\mathcal{Y}_{t-2}, \mathcal{Y}_{t-1}, \mathcal{Y}_{t}$ for current and last frame pair using the last and current recovered pose estimates and find their 3D positions

$$
\mathcal{X}_{t-2, t-1}, \mathcal{X}_{t-1, t}
$$

- Rescale translation of current relative pose estimate to match the reconstruction scale with the distance ratio between corresponding 3D point pairs

$$
r_{i, j}=\frac{\left\|\mathbf{x}_{t-2, t-1, i}-\mathbf{x}_{t-2, t-1, j}\right\|_{2}}{\left\|\mathbf{x}_{t-1, t, i}-\mathbf{x}_{t-1, t, j}\right\|_{2}}
$$

- Use mean or robust median over available pair ratios

Algorithm: 2D-to-2D Visual Odometry

Input: image sequence $I_{0: t}$, camera calibration
Output: aggregated camera poses $\mathbf{T}_{0: t}$

Algorithm:

For each current image I_{k} :

1. Extract and match keypoints between I_{k-1} and I_{k}
2. Compute relative pose \mathbf{T}_{k}^{k-1} from essential matrix between I_{k}, I_{k-1}
3. Fine-tune pose estimate by minimizing reprojection error
4. Compute relative scale and rescale translation of \mathbf{T}_{k}^{k-1}
5. Aggregate camera pose by $\mathbf{T}_{k}=\mathbf{T}_{k-1} \mathbf{T}_{k}^{k-1}$

2D-to-3D Motion Estimation

- Given a local set of 3D points $\mathcal{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ and corresponding image observations

$$
\mathcal{Y}_{t}=\left\{\mathbf{y}_{t, 1}, \ldots, \mathbf{y}_{t, N}\right\}
$$

determine camera pose \mathbf{T}_{t} within the local map

- Minimize least squares geometric reprojection error

$$
E\left(\mathbf{T}_{t}\right)=\sum_{i=1}^{N}\left\|\mathbf{y}_{t, i}-\pi\left(\mathbf{T}_{t}^{-1} \mathbf{x}_{i}\right)\right\|_{2}^{2}
$$

- A.k.a. Perspective-n-Points (PnP) problem, many approaches exist, f.e.
- Direct linear transform (DLT)
- EPnP (Lepetit et al., An accurate O(n) Solution to the PnP problem, IJCV 2009)
- OPnP (Zheng et al., Revisiting the PnP Problem: A Fast, General and Optimal Solution, ICCV 2013)

Direct Linear Transform for PnP

- Goal: determine projection matrix $\mathrm{P}=(\mathbf{R} \mathbf{t}) \in \mathbb{R}^{3 \times 4}=\left(\begin{array}{l}\mathbf{P}_{1} \\ \mathbf{P}_{2} \\ \mathbf{P}_{3}\end{array}\right)$
- Each 2D-to-3D point correspondence 3D: $\widetilde{\mathbf{x}}_{i}=\left(x_{i}, y_{i}, z_{i}, w_{i}\right)^{\top} \in \mathbb{P}^{3} \quad$ 2D: $\widetilde{\mathbf{y}}_{i}=\left(x_{i}^{\prime}, y_{i}^{\prime}, w_{i}^{\prime}\right)^{\top} \in \mathbb{P}^{2}$ gives two constraints

$$
\left(\begin{array}{ccc}
0 & -w_{i}^{\prime} \tilde{\mathbf{x}}_{i}^{\top} & y_{i}^{\prime} \widetilde{\mathbf{x}}_{i}^{\top} \\
w_{i}^{\prime} \tilde{\mathbf{x}}_{i}^{\top} & 0 & -x_{i}^{\prime} \widetilde{\mathbf{x}}_{i}^{\top}
\end{array}\right)\left(\begin{array}{l}
\mathbf{P}_{1}^{\top} \\
\mathbf{P}_{2}^{\top} \\
\mathbf{P}_{3}^{\top}
\end{array}\right)=\mathbf{0}
$$

through $\widetilde{\mathbf{y}}_{i} \times\left(\mathbf{P} \widetilde{\mathbf{x}}_{i}\right)=0$

- Form linear system of equations $\mathbf{A p}=0$ with $\mathbf{p}:=\left(\begin{array}{c}\mathbf{P}_{1}^{\top} \\ \mathbf{P}_{2}^{\top} \\ \mathbf{P}_{3}^{\top}\end{array}\right) \in \mathbb{R}^{9}$
from $N \geq 6$ correspondences
- Solve for p : determine unit singular vector of A corresponding to its smallest singular value

Algorithm: 2D-to-3D Visual Odometry

Input: image sequence $I_{0: t}$, camera calibration
Output: aggregated camera poses $\mathrm{T}_{0: t}$

Algorithm:

Initialize:

1. Extract and match keypoints between I_{0} and I_{1}
2. Determine camera pose (essential matrix) and triangulate 3D keypoints X_{1}
For each current image I_{k} :
3. Extract and match keypoints between I_{k-1} and I_{k}
4. Compute camera pose \mathbf{T}_{k} using PnP from 2D-to-3D matches
5. Triangulate all new keypoint matches between I_{k-1} and I_{k} and add them to the local map X_{k}

3D-to-3D Motion Estimation

- Given corresponding 3D points in two camera frames
$\mathcal{X}_{t-1}=\left\{\mathbf{x}_{t-1,1}, \ldots, \mathbf{x}_{t-1, N}\right\}$
$\mathcal{X}_{t}=\left\{\mathbf{x}_{t, 1}, \ldots, \mathbf{x}_{t, N}\right\}$
determine relative camera pose \mathbf{T}_{t}^{t-1}

- Idea: determine rigid transformation that aligns the 3D points
- Geometric least squares error: $E\left(\mathbf{T}_{t}^{t-1}\right)=\sum_{i=1}^{N}\left\|\overline{\mathbf{x}}_{t-1, i}-\mathbf{T}_{t}^{t-1} \overline{\mathbf{x}}_{t, i}\right\|_{2}^{2}$
- Closed-form solutions available, f.e. Arun et al., 1987
- Applicable f.e. for calibrated stereo cameras (triangulation of 3D points) or RGB-D cameras (measured depth)

3D Rigid-Body Motion from 3D-to-3D Matches

- Arun et al., Least-squares fitting of two 3-d point sets, IEEE PAMI, 1987
- Corresponding 3D points, $N \geq 3$

$$
\mathcal{X}_{t-1}=\left\{\mathbf{x}_{t-1,1}, \ldots, \mathbf{x}_{t-1, N}\right\} \quad \mathcal{X}_{t}=\left\{\mathbf{x}_{t, 1}, \ldots, \mathbf{x}_{t, N}\right\}
$$

- Determine means of 3D point sets

$$
\boldsymbol{\mu}_{t-1}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{t-1, i}
$$

$$
\boldsymbol{\mu}_{t}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{t, i}
$$

- Determine rotation from

$$
\mathbf{A}=\sum_{i=1}^{N}\left(\mathbf{x}_{t-1}-\boldsymbol{\mu}_{t-1}\right)\left(\mathbf{x}_{t}-\boldsymbol{\mu}_{t}\right)^{\top} \quad \mathbf{A}=\mathbf{U S V}^{\top} \quad \mathbf{R}_{t-1}^{t}=\mathbf{V U}^{\top}
$$

- Determine translation as $\mathbf{t}_{t-1}^{t}=\boldsymbol{\mu}_{t}-\mathbf{R}_{t-1}^{t} \boldsymbol{\mu}_{t-1}$

Algorithm: Stereo 3D-to-3D Visual Odometry

Input: stereo image sequence $I_{0: t}^{l}, I_{0: t}^{r}$, camera calibration (including known pose between stereo cameras)
Output: aggregated camera poses $\mathrm{T}_{0: t}$

Algorithm:

For each current stereo image I_{k}^{l}, I_{k}^{r} :

1. Extract and match keypoints between I_{k}^{l} and I_{k-1}^{l}
2. Triangulate 3D points X_{k} between I_{k}^{l} and I_{k}^{r}
3. Compute camera pose \mathbf{T}_{k}^{k-1} from 3D-to-3D point matches X_{k} to X_{k-1}
4. Aggregate camera pose by $\mathbf{T}_{k}=\mathbf{T}_{k-1} \mathbf{T}_{k}^{k-1}$

Motion Estimation from Point Correspondences

- 2D-to-2D
- Reproj. error:
$E\left(\mathbf{T}_{t}^{t-1}, X\right)=\sum_{i=1}^{N}\left\|\bar{y}_{t, i}-\pi\left(\overline{\mathbf{x}}_{i}\right)\right\|_{2}^{2}+\left\|\overline{\bar{y}}_{t-1, i}-\pi\left(\mathbf{T}_{t}^{t-1} \overline{\mathbf{x}}_{i}\right)\right\|_{2}^{2}$
- Linear algorithm: 8-point
- 2D-to-3D
- Reprojection error: $E\left(\mathbf{T}_{t}\right)=\sum_{i=1}^{N}\left\|\mathbf{y}_{t, i}-\pi\left(\mathbf{T}_{t} \overline{\bar{x}}_{i}\right)\right\|_{2}^{2}$
- Linear algorithm: DLT PnP

- 3D-to-3D
- Reprojection error: $E\left(\mathbf{T}_{t}^{t-1}\right)=\sum_{i=1}^{N}\left\|\overline{\mathrm{x}}_{t-1, i}-\mathbf{T}_{t}^{t-1} \overline{\mathrm{x}}_{t, i}\right\|_{2}^{2}$
- Linear algorithm: Arun's method

Further Considerations

- How to detect keypoints?
- How to match keypoints?
- How to cope with outliers in keypoint matches?
- When to create new 3D keypoints ? Which keypoints to use?
- How to cope with noisy observations?
- 2D-to-2D, 2D-to-3D or 3D-to-3D?
- Optimize over more than two frames?

Keypoint Detection

- Desirable properties of keypoint detectors for visual odometry:
- High repeatability
- Localization accuracy
- Robustness
- Invariance
- Computational efficiency

Harris Corners
Image source: Svetlana Lazebnik

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM

Keypoint Detection

- Corners
- Image locations with locally prominent intensity variation
- Examples: Harris, FAST

Harris Corners
Image source: Svetlana Lazebnik

- Blobs
- Image regions that stick out from their surrounding in intensity/texture
- F.e.: LoG, DoG (SIFT), SURF

Keypoint Detection

- Invariance for view-point changes
- Translation
- Rotation
- Scale
- Perspective

Keypoint Detection

- Corners vs. blobs for visual odometry:
- Typically corners provide higher spatial localization accuracy, but are less well localized in scale
- Corners are typically detected in less distinctive local image regions
- Highly run-time efficient corner detectors exist (f.e. FAST)

Harris Corners
Image source: Svetlana Lazebnik

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM

Keypoint Matching

- Desirable properties for VO:
- High recall
- Precision
- Robustness
- Computational efficiency

Keypoint Matching

- Data association principles:
- Matching by reprojection error / distance to epipolar line: assumes an initial guess for camera motion (f.e. Kalman filter prediction, IMU, or wheel odometry)
- Detect-then-track (f.e. KLT-tracker): Correspondence search by local image alignment, assumes incremental small (but unknown) motion between images
- Matching by descriptor: scale-/viewpoint-invariant local descriptors
- Robustness through outlier rejection (f.e. RANSAC) for motion estimation

Local Feature Descriptors

- Desirable properties for VO: distinctiveness, robustness, invariance
- Extract signatures that describe local image regions, examples:
- Histograms over image gradients (SIFT)
- Histograms over Haar-wavelet responses (SURF)
- Binary patterns (BRIEF, BRISK, FREAK, etc.)
- Learning-based descriptors (f.e. Calonder et al., ECCV 2008)
- Rotation-invariance: Align with dominant orientation in local region
- Scale-invariance: Adapt described region extent to keypoint scale

SIFT gradient pooling

BRIEF test locations

First-Order Error Propagation

- Given a non-linear function in a Gaussian variable

$$
\mathbf{y}=f(\mathbf{x})
$$

- Apply first-order Taylor approximation

$$
\mathbf{y} \approx f\left(\mathbf{x}_{0}\right)+\nabla_{\mathbf{x}} f\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

- Note: Linear transformation $\mathbf{y}=\mathbf{A x}+\mathbf{b}$ of Gaussian variable remains Gaussian: $\mathbf{y} \sim \mathcal{N}\left(\mathbf{A} \boldsymbol{\mu}_{\mathbf{x}}+\mathbf{b}, \mathbf{A} \boldsymbol{\Sigma}_{\mathbf{x}} \mathbf{A}^{\top}\right)$
- Gaussian approximation of the non-linearly transformed variable

$$
\mathbf{y} \sim \mathcal{N}\left(f\left(\boldsymbol{\mu}_{\mathbf{x}}\right), \nabla_{\mathbf{x}} f\left(\boldsymbol{\mu}_{\mathbf{x}}\right) \boldsymbol{\Sigma}_{\mathbf{x}} \nabla_{\mathbf{x}} f\left(\boldsymbol{\mu}_{\mathbf{x}}\right)^{\top}\right)
$$

Disparity and Depth

Similar triangles:

$$
\frac{b}{z}=\frac{b-d}{z-f}
$$

$\longrightarrow d=\frac{b f}{z}$

- Let's consider a simple case when camera planes are parallel and focal lengths are equal
- Disparity d is inversely proportional to depth z: The larger the depth, the smaller the disparity
- Disparity d is proportional to baseline b: The larger the baseline, the larger the disparity

Uncertainty of Depth Estimates

- Given Gaussian uncertainty in the disparity
- Can we quantify the uncertainty in the depth estimate?
- Blackboard

Drift in Motion Estimates

- Since we aggregate pose estimates from relative pose estimates, estimation errors in relative poses accumulate: Drift
- Noisy observations of 2D image point location
- How does uncertainty in motion estimate depend on observation noise?

baseline << depth

baseline ~ depth

Keyframes

- Popular approach to reduce drift: Keyframes
- Carefully select reference images for motion estimation / triangulation
- Incrementally estimate motion towards keyframe
- If baseline sufficient (and/or image overlap small), create next keyframe (and for instance triangulate 3D positions of keypoints)

Probabilistic Modelling

- Model image point observation likelihood $p\left(\mathbf{y}_{i} \mid \mathbf{x}_{i}, \boldsymbol{\xi}\right)$
f.e. Gaussian: $p\left(\mathbf{y}_{i} \mid \mathbf{x}_{i}, \boldsymbol{\xi}\right)=\mathcal{N}\left(\mathbf{y}_{i} ; \pi\left(\mathbf{T}(\boldsymbol{\xi}) \overline{\mathbf{x}}_{i}\right), \boldsymbol{\Sigma}_{\mathbf{y}_{i}}\right)$
- Optimize maximum a-posteriori likelihood of estimates
$p(\mathcal{X}, \boldsymbol{\xi} \mid \mathcal{Y}) \propto p(\mathcal{Y} \mid \mathcal{X}, \boldsymbol{\xi}) p(\mathcal{X}, \boldsymbol{\xi})=p(\mathcal{X}, \boldsymbol{\xi}) \prod_{i=1}^{N} p\left(\mathbf{y}_{i} \mid \mathbf{x}_{i}, \boldsymbol{\xi}\right)$

Neg. \log-likelihood: $E(\mathcal{X}, \boldsymbol{\xi})=-\log (p(\mathcal{X}, \boldsymbol{\xi}))-\sum_{i=1}^{N} \log \left(p\left(\mathbf{y}_{i} \mid \mathbf{x}_{i}, \boldsymbol{\xi}\right)\right)$

Probabilistic Modelling

- Gaussian prior and observation likelihood:

$$
\begin{aligned}
& E(\mathcal{X}, \boldsymbol{\xi})=\text { const. }+\left(\boldsymbol{\xi}-\boldsymbol{\mu}_{\boldsymbol{\xi}, 0}\right)^{\top} \boldsymbol{\Sigma}_{\boldsymbol{\xi}, 0}^{-1}\left(\boldsymbol{\xi}-\boldsymbol{\mu}_{\boldsymbol{\xi}, 0}\right)+ \\
& \sum_{i=1}^{N}\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{\mathbf{x}_{i}, 0}\right)^{\top} \boldsymbol{\Sigma}_{\mathbf{x}_{i}, 0}^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{\mathbf{x}_{i}, 0}\right)+\left(\mathbf{y}_{i}-\pi\left(\mathbf{T}(\boldsymbol{\xi}) \mathbf{x}_{i}\right)\right)^{\top} \boldsymbol{\Sigma}_{\mathbf{y}_{i}}^{-1}\left(\mathbf{y}_{i}-\pi\left(\mathbf{T}(\boldsymbol{\xi}) \mathbf{x}_{i}\right)\right)
\end{aligned}
$$

- Gauss-Newton yields Gaussian estimate $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- MAP solution $\arg \min _{\mathbf{x}} E(\mathbf{x})=\frac{1}{2} \mathbf{r}(\mathbf{x})^{\top} \mathbf{W r}(\mathbf{x})$ is the mean
- The inverse Hessian of the Gauss-Newton approximation

$$
\boldsymbol{\Sigma} \approx\left(\nabla_{\mathbf{x}} \mathbf{r}(\boldsymbol{\mu})^{\top} \mathbf{W} \nabla_{\mathbf{x}} \mathbf{r}(\boldsymbol{\mu})\right)^{-1}
$$

yields an approximate covariance of the estimates

Motion Estimation for Camera Type

Correspondences	Monocular	Stereo	RGB-D
2D-to-2D	X	X	X
2D-to-3D	X	X	X
3D-to-3D		X	X

Further Reading

- MASKS and MVG textbooks

MASKS

An Invitation to 3D
Vision,
Y. Ma, S. Soatto, J.

Kosecka, and S. S.
Sastry,
Springer, 2004

Lessons Learned Today

- Motion estimation from point correspondences
- 2D-to-3D correspondences, DLT algorithm for PnP
- 3D-to-3D correspondences, Arun's method
- Rudimentary visual odometry approaches based on 2D-to-3D and 3D-to-3D motion estimation (not robust yet)
- Properties for keypoint detection and matching
- Probabilistic modeling can incorporate priors and find probabilistic estimates
- Uncertainty in structure and motion estimation depends on observation noise
- Visual odometry methods accumulate drift
- Motion estimation towards keyframes reduces drift

Thanks for your attention!

