

Computer Vision Group Prof. Daniel Cremers

Robotic 3D Vision

Lecture 7: Keypoint Detection, Description and Matching

Prof. Dr. Jörg Stückler Computer Vision Group, TU Munich http://vision.in.tum.de

What We Will Cover Today

- Keypoint detection
 - Corner detection
 - Blob detection
 - Scale selection
- Keypoint description
 - Scale-Invariant Feature Transform (SIFT)
- State-of-the-art detectors and descriptors
- Keypoint matching
- RANSAC

Recap: Keypoint Detection

- Desirable properties of keypoint detectors for visual odometry:
 - high repeatability,
 - localization accuracy,
 - robustness,
 - invariance,
 - computational efficiency

Harris Corners Image source: Svetlana Lazebnik

Recap: Keypoint Matching

- Desirable properties for VO:
 - High recall
 - Precision
 - Robustness
 - Computational efficiency
- One possible approach to keypoint matching: by descriptor

Recap: Local Feature Descriptors

- Desirable properties for VO: distinctiveness, robustness, invariance
- Extract signatures that describe local image regions, examples:
 - Histograms over image gradients (SIFT)
 - Histograms over Haar-wavelet responses (SURF)
 - Binary patterns (BRIEF, BRISK, FREAK, etc.)
 - Learning-based descriptors (f.e. Calonder et al., ECCV 2008)
- Rotation-invariance: Align with dominant orientation in local region
- Scale-invariance: Adapt described region extent to keypoint scale

BRIEF test locations

Image source: Svetlana Lazebnik / Calonder et al., ECCV 2010

Image Matching

NASA Mars Rover images

Image Matching

NASA Mars Rover images with SIFT feature matches Figure by Noah Snavelyrof. Dr. Jörg Stückler, Computer Vision Group, TUM Slide adapted from Steve Seitz

Robotic 3D Vision

Invariant Local Features

Find features that are invariant to transformations

- geometric invariance: translation, rotation, scale
- photometric invariance: brightness, exposure, ...

Slide adapted from Steve Seitz

Advantages of Local Features

Locality

• features are local, so robust to occlusion and clutter

Distinctiveness:

• can differentiate a large database of objects

Quantity

• hundreds or thousands in a single image

Efficiency

• real-time performance achievable

Local Measures of Uniqueness

Suppose we only consider a small window of pixels

• What defines whether a feature is well localized and unique?

Local Measure of Uniqueness

 How does the window change when you shift by a small amount?

"flat" region: no change in all directions

"edge":

no change along the edge direction

"corner": significant change in all directions

Locally Unique Features (Corners)

Define

E(u,v) = amount of change when you shift the window by (u,v)

E(u,v) is small for all shifts

E(u,v) is small for some shifts

E(u,v) is small for no shifts

We want
$$\min_{(u,v)} E(u,v)$$
 to be?

Corner Detection

Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by Sum of the Squared Differences (SSD)
- this defines an SSD "error" E(u,v):

$$E(u,v) = \sum_{(x,y)\in W} \left[I(x+u,y+v) - I(x,y) \right]^2$$

Sum of Squared Differences (SSI

Sum of Squared Differences (SSD)

Small Motion Assumption

Taylor Series expansion of I:

 $I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$

If the motion (u,v) is small, then first order approx is good

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x, y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$

shorthand: $I_x = \frac{\partial I}{\partial x}$

Plugging this into the formula on the previous slide...

Corner Detection

Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences
- this defines an "error" of E(u,v):

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

Corner Detection

Consider shifting the window W by (u,v)

 $(x,y) \in W$

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences
- this defines an "error" of E(u,v):

$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

16

$$\approx \sum_{(x,y)\in W} \left[I(x,y) + \left[I_x \ I_y \right] \left[\begin{array}{c} u \\ v \end{array} \right] - I(x,y) \right]^2$$
$$\approx \sum \left[\left[I_x \ I_y \right] \left[\begin{array}{c} u \\ v \end{array} \right] \right]^2$$

Robotic 3D Vision

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM

Slide adapted from Steve Seitz

 $\mathbf{\Omega}$

Structure Tensor

This can be rewritten:

$$E(u,v) = \sum_{(x,y)\in W} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$
$$\begin{bmatrix} u \\ v \end{bmatrix}$$

For the example above

- You can move the center of the green window to anywhere on the blue unit circle
- Which directions will result in the largest and smallest E values?
- We can find these directions by looking at the eigenvectors of H

Robotic 3D Vision

Structure Tensor

This can be rewritten:

$$E(u,v) = \begin{bmatrix} u & v \end{bmatrix} \left(\sum_{(x,y) \in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix}$$

$$K_{+} = \begin{bmatrix} v \\ v \end{bmatrix}$$

Eigenvalues and eigenvectors of H

- Define shifts with the smallest and largest change (E value)
- x₊ = direction of largest increase in E.
- λ_{+} = amount of increase in direction x_{+}
- x₋ = direction of smallest increase in E.
- λ = amount of increase in direction x_ Robotic 3D Vision

$$Hx_+ = \lambda_+ x_+$$

$$Hx_{-} = \lambda_{-}x_{-}$$

Corner Detection

Define

E(u,v) = amount of change when you shift the window by (u,v)

E(u,v) is small for all shifts

E(u,v) is small for some shifts

E(u,v) is small for no shifts

We want
$$\min_{(u,v)} E(u,v)$$
 to be large: maximize λ_-

Corner Detection Recipe

- Compute the gradient at each point in the image
- Create the H matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response (λ_{-} > threshold)
- Choose those points where λ_{-} is a local maximum as features

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM Slide adapted from Steve Seitz

Corner Detection Recipe

- Compute the gradient at each point in the image
- Create the H matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response (λ_{-} > threshold)
- Choose those points where λ_{-} is a local maximum as features

Harris Operator

• λ_{-} is a variant of the "Harris operator" for corner detection

$$f = \frac{\lambda_{-}\lambda_{+}}{\lambda_{-} + \lambda_{+}}$$
$$= \frac{determinant(H)}{trace(H)}$$

- The trace is the sum of the diagonals, i.e., trace(H) = $h_{11} + h_{22}$
- Very similar to λ_{-} but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Lots of other detectors, this is one of the most popular

Harris Operator

Robotic 3D Vision

Harris Detector Example

Robotic 3D Vision

Harris Corner Response

Robotic 3D Vision

(red high, blue low)

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM Slide adapted from Steve Seitz

Thresholded Harris Corner Response

Local Maxima of Harris Corner Response

Robotic 3D Vision

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM Slide adapted from Steve Seitz

Harris Corners

Robotic 3D Vision

Edge Detection

Slide adapted from Silvio Savarese

Laplacian of Gaussian

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM

 $\nabla^2 f = \frac{\partial^2 f}{\partial r^2} + \frac{\partial^2 f}{\partial u^2}$

Blob Detection in 1D

• Can we use the Laplacian of Gaussian (LoG) to find blobs?

Robotic 3D Vision

Blob Detection in 1D

• How can we detect blobs at many different scales?

Idea: convolve the image with LoGs of different scales

Robotic 3D Vision

Slide adapted from Silvio Savarese

Scale-Space Blob Detection in 1D

• How can we detect blobs at many different scales?

What is wrong here?

Characteristic Scale

- We need to scale-normalize the LoG operator so that the energy of the convolved signal remains the same
- Multiply LoG operator with σ^2

The convolved signal attains a maximum at its characteristic scale

Slide adapted from Silvio Savarese

Scale-Normalized LoG in 2D

- Laplacian of Gaussian in 2D
- Circular symmetric operator

$$\operatorname{LoG}_{norm}(u,v) = \sigma^2 \nabla^2 h_\sigma(u,v)$$

Scale Selection

• For a circle of radius r, convolution with scale-normalized LoG attains a maximum response at $\sigma = \frac{r}{\sqrt{2}}$

Scale-Space Blob Detection

- Convolve image with scale-normalized LoG of different neighboring scales
- Find maxima of squared Laplacian response along the spatial and the scale dimension
- SIFT: approximate LoG with Difference of Gaussians
- SURF: approximate LoG with Haar features

Blob Detection Example

Keypoint Descriptors

- We know how to detect good points
- Next question: How to match them?

 Idea: extract distinctive descriptor vector from a local patch around the keypoint

Robotic 3D Vision

Invariance

- Goal: match keypoints regardless of image transformation
 - This is called transformational invariance
- Most keypoint detection and description methods are designed to be invariant to
 - Translation, 2D rotation, scale
- They can usually also handle
 - Limited 3D rotations (SIFT works up to about 60 degrees)
 - Limited affine transformations (some are fully affine invariant)
 - Limited illumination/contrast changes

Robotic 3D Vision

Prof. Dr. Jörg Stückler, Computer Vision Group, TUM Slide adapted from Steve Seitz

Invariant Detection and Description

- Make sure your detector is invariant
 - Harris is invariant to translation and rotation
 - Scale is trickier
 - Scale selection for blobs (f.e. SIFT)
 - Keypoints at multiple scales for same location
- Design an invariant feature descriptor
 - A descriptor captures the information in a region around the detected feature point
 - The simplest descriptor: a square window of pixels
 - What's this invariant to?
 - Let's look at some better approaches...

Robotic 3D Vision

2D Rotation Invariance

- Idea: align the descriptor with a dominant 2D orientation
- Example approach: Use the eigenvector of H corresponding to larger eigenvalue

Figure by Matthew Brown

Slide adapted from Steve Seitz

Scale Invariant Feature Transform (SIFT)

- Take 16x16 square window around detected feature
- Compute edge orientation (angle of the gradient) for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge orientations
- Select two strongest orientations and create two descriptors

SIFT Descriptor

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Properties of SIFT

- Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time
- Lots of code available
 - http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Kno wn_implementations_of_SIFT
- But: false positive matches

SURF

- Speeded Up Robust Features
- Approximates LoG and descriptor calculation in SIFT using Haar wavelets
 - Faster computation
 - Similar performance like SIFT

Bay, Tuytelaars, Van Gool, Speeded Up Robust Features, ECCV 2006

FAST Detector

- Features from Accelerated Segment Test
- Check relation of brightness values to center pixel along circle
- Specific number of contiguous pixels brighter or darker than center

• Very fast corner detection

Rosten, Drummond, Fusing Points and Lines for High Performance Tracking, ICCV 2005

BRIEF Descriptor

- Binary Robust Independent Elementary Features
- Binary descriptor from intensity comparisons at sample positions
- Very efficient to compute
- Fast matching distance through Hamming distance

Calonder, Lepetit, Strecha, Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV'10

ORB Descriptor

- Oriented Fast and Rotated BRIEF
 - Combination of FAST detector and BRIEF descriptor
 - Rotation-invariant BRIEF: Estimate dominant orientation from patch moments
- Very popular for VO

Rublee, Rabaud, Konolige, Bradski, ORB: an efficient alternative to SIFT or SURF, ICCV 2011

Keypoint Matching

• Match keypoints with similar descriptors

Matching Distance

- How to define the difference between two descriptors f1, f2?
- Simple approach is to assign keypoints with maximal sum of square differences SSD(f1, f2) between entries of the two descriptors

Matching Distance

- Better approach:
 best to second best ratio distance = SSD(f1, f2) / SSD(f1, f2')
 - f2 is best SSD match to f1 in I2
 - f2' is 2nd best SSD match to f1 in I2

Eliminating Bad Matches

feature distance

- Only accept matches with distance larger a threshold
- How to choose the threshold?

True/False Positives

feature distance

- Choice of threshold affects performance
 - Too restrictive: less false positives (#false matches) but also less true positives (#true matches)
 - Too lax: more true positives but also more false positives
- Can we do more?

Robotic 3D Vision

Random Sample Consensus (RANSAC)

- Model fitting in presence of noise and outliers
- Example: fitting a line through 2D points

• Least-squares solution, assuming constant noise for all points

RANSAC

• We only need 2 points to fit a line. Let's try 2 random points

• Let's try 2 other random points

• Let's try yet another 2 random points

 Let's use the inliers of the best trial so far to perform least squares fitting

RANSAC Algorithm

- RANdom SAmple Consensus algorithm formalizes this idea
- Algorithm:

Input: data $D_{\rm F}s$ required #data points for fitting, success probability p , outlier ratio ϵ

Output: inlier set

- **1.** Compute required number of iterations $N = \frac{\log (1-p)}{\log (1-(1-\epsilon)^s)}$
- **2.** For N iterations do:
 - **1**. Randomly select a subset of *s* data points
 - 2. Fit model on the subset
 - 3. Count inliers and keep model/subset with largest number of inliers
- 3. Refit model using found inlier set

N for p=0.99

	Required points	Outlier ratio ϵ						
	S	10%	20%	30%	40%	50%	60%	70%
Line	2	3	5	7	11	17	27	49
Plane	3	4	7	11	19	35	70	169
Essential matrix	8	9	26	78	272	1177	7025	70188

Lessons Learned Today

- Keypoint detection, description and matching is a well researched topic
- Highly performant corner and blob detectors exist
- Corners are optimized for localization accuracy
- Blobs have a natural notion of scale through the scale-normalized LoG
- ORB is currently most popular detector/descriptor combination for visual motion estimation
- Keypoint matching by descriptor distance
- Robust matching based on model fitting using RANSAC

Thanks for your attention!