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What We Will Cover Today
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• Keypoint detection

• Corner detection

• Blob detection

• Scale selection

• Keypoint description

• Scale-Invariant Feature Transform (SIFT)

• State-of-the-art detectors and descriptors

• Keypoint matching

• RANSAC



Recap: Keypoint Detection
• Desirable properties of keypoint detectors for visual odometry:

• high repeatability, 

• localization accuracy, 

• robustness, 

• invariance, 

• computational efficiency

Robotic 3D Vision

Image source: Svetlana Lazebnik

Harris Corners DoG (SIFT) Blobs
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Recap: Keypoint Matching

• Desirable properties for VO:

• High recall

• Precision

• Robustness

• Computational efficiency

• One possible approach to keypoint matching: by descriptor
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Recap: Local Feature Descriptors
• Desirable properties for VO: distinctiveness, robustness, invariance

• Extract signatures that describe local image regions, examples:
• Histograms over image gradients (SIFT)

• Histograms over Haar-wavelet responses (SURF)

• Binary patterns (BRIEF, BRISK, FREAK, etc.)

• Learning-based descriptors (f.e. Calonder et al., ECCV 2008)

• Rotation-invariance: Align with dominant orientation in local region

• Scale-invariance: Adapt described region extent to keypoint scale

Robotic 3D Vision

SIFT gradient pooling BRIEF test locations

Image source: Svetlana Lazebnik / Calonder et al., ECCV 2010
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Image Matching

NASA Mars Rover images
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NASA Mars Rover images
with SIFT feature matches

Figure by Noah Snavely

Image Matching
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Invariant Local Features

Find features that are invariant to transformations

• geometric invariance:  translation, rotation, scale

• photometric invariance:  brightness, exposure, …

Feature Descriptors
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Advantages of Local Features

Locality 

• features are local, so robust to occlusion and clutter

Distinctiveness: 

• can differentiate a large database of objects

Quantity

• hundreds or thousands in a single image

Efficiency

• real-time performance achievable
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Local Measures of Uniqueness

Suppose we only consider a small window of pixels

• What defines whether a feature is well localized and unique?
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Local Measure of Uniqueness

“flat” region:
no change in all 
directions

“edge”:  
no change along the 
edge direction

“corner”:
significant change in 
all directions

• How does the window change when you shift by a small 
amount?
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We want                          to be?

Locally Unique Features (Corners)
Define

E(u,v) = amount of change when you shift the window by (u,v)

E(u,v) is small

for all shifts

E(u,v) is small

for some shifts

E(u,v) is small 

for no shifts
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Consider shifting the window W by (u,v)
• how do the pixels in W change?

• compare each pixel before and after by
Sum of the Squared Differences (SSD)

• this defines an SSD “error” E(u,v):

Corner Detection

W

Sum of Squared Differences (SSD)
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Taylor Series expansion of I:

If the motion (u,v) is small, then first order approx is good

Plugging this into the formula on the previous slide…

Small Motion Assumption
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Consider shifting the window W by (u,v)
• how do the pixels in W change?

• compare each pixel before and after by
summing up the squared differences

• this defines an “error” of E(u,v):

Corner Detection

W
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Corner Detection

Consider shifting the window W by (u,v)
• how do the pixels in W change?

• compare each pixel before and after by
summing up the squared differences

• this defines an “error” of E(u,v):

W
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Structure Tensor
This can be rewritten:

For the example above
• You can move the center of the green window to anywhere on the blue 

unit circle

• Which directions will result in the largest and smallest E values?

• We can find these directions by looking at the eigenvectors of H
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Structure Tensor
This can be rewritten:

Eigenvalues and eigenvectors of H
• Define shifts with the smallest and largest change (E value)

• x+ = direction of largest increase in E. 

• + = amount of increase in direction x+

• x- = direction of smallest increase in E. 

• - = amount of increase in direction x-

x-

x+
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We want                          to be large: maximize 

Corner Detection
Define

E(u,v) = amount of change when you shift the window by (u,v)

E(u,v) is small

for all shifts

E(u,v) is small

for some shifts

E(u,v) is small 

for no shifts
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Corner Detection Recipe
• Compute the gradient at each point in the image

• Create the H matrix from the entries in the gradient

• Compute the eigenvalues. 

• Find points with large response (- > threshold)

• Choose those points where - is a local maximum as features
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Corner Detection Recipe
• Compute the gradient at each point in the image

• Create the H matrix from the entries in the gradient

• Compute the eigenvalues. 

• Find points with large response (- > threshold)

• Choose those points where - is a local maximum as features
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Harris Operator

• - is a variant of the “Harris operator” for corner 
detection

• The trace is the sum of the diagonals, i.e., trace(H) = h11 + h22

• Very similar to - but less expensive (no square root)

• Called the “Harris Corner Detector” or “Harris Operator”

• Lots of other detectors, this is one of the most popular
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Harris Operator

Harris 
operator

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 23
Slide adapted from Steve Seitz



Harris Detector Example

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 24
Slide adapted from Steve Seitz



Harris Corner Response

(red high, blue low) Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 25
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Thresholded Harris Corner Response
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Local Maxima of Harris Corner Response
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Harris Corners

Prof. Dr. Jörg Stückler, Computer Vision Group, TUMRobotic 3D Vision 28
Slide adapted from Steve Seitz



Edge Detection

Where is the edge?  Look for peaks in 
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Slide adapted from Silvio Savarese



Laplacian of Gaussian
operator

Where is the edge?  Zero-crossings of bottom graph

Laplacian of Gaussian

• Consider  
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Laplacian of Gaussian in 2D

is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian
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Blob Detection in 1D

• Can we use the Laplacian of Gaussian (LoG) to find blobs?  
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Convolution with LoG achieves max. if it matches the scale of the blob

Slide adapted from Silvio Savarese



Blob Detection in 1D

• How can we detect blobs at many different scales?
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Idea: convolve the image with LoGs of different scales



Scale-Space Blob Detection in 1D

• How can we detect blobs at many different scales?

What is wrong here?
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Characteristic Scale

• We need to scale-normalize the LoG operator so that the 
energy of the convolved signal remains the same

• Multiply LoG operator with 

The convolved signal attains a maximum at its characteristic scale
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Slide adapted from Silvio Savarese



Scale-Normalized LoG in 2D

• Laplacian of Gaussian in 2D

• Circular symmetric operator
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Scale Selection

• For a circle of radius    , convolution with scale-normalized 
LoG attains a maximum response at 
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Scale-Space Blob Detection

• Convolve image with scale-normalized LoG of different 
neighboring scales

• Find maxima of squared Laplacian response along the 
spatial and the scale dimension

• SIFT: approximate LoG
with Difference of 
Gaussians

• SURF: approximate LoG
with Haar features
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Blob Detection Example
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Keypoint Descriptors

• We know how to detect good points

• Next question: How to match them?

• Idea: extract distinctive descriptor vector from a local patch 
around the keypoint

?
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Invariance
• Goal: match keypoints regardless of image transformation

• This is called transformational invariance

• Most keypoint detection and description methods are 
designed to be invariant to 
• Translation, 2D rotation, scale

• They can usually also handle
• Limited 3D rotations (SIFT works up to about 60 degrees)
• Limited affine transformations (some are fully affine invariant)
• Limited illumination/contrast changes

?
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Slide adapted from Steve Seitz



Invariant Detection and Description

• Make sure your detector is invariant

• Harris is invariant to translation and rotation

• Scale is trickier
• Scale selection for blobs (f.e. SIFT)

• Keypoints at multiple scales for same location

• Design an invariant feature descriptor

• A descriptor captures the information in a region around 
the detected feature point

• The simplest descriptor:  a square window of pixels 
• What’s this invariant to?

• Let’s look at some better approaches…
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2D Rotation Invariance
• Idea: align the descriptor with a dominant 2D orientation
• Example approach: Use the eigenvector of H corresponding to 

larger eigenvalue 

Figure by Matthew Brown
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Scale Invariant Feature Transform (SIFT)

• Take 16x16 square window around detected feature
• Compute edge orientation (angle of the gradient) for each pixel
• Throw out weak edges (threshold gradient magnitude)
• Create histogram of surviving edge orientations
• Select two strongest orientations and create two descriptors 

0 2π
angle histogram
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SIFT Descriptor

• Divide the 16x16 window into a 4x4 grid of cells (2x2 case 
shown below)

• Compute an orientation histogram for each cell
• 16 cells * 8 orientations = 128 dimensional descriptor
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Properties of SIFT
• Can handle changes in viewpoint

• Up to about 60 degree out of plane rotation

• Can handle significant changes in illumination
• Sometimes even day vs. night (below)

• Fast and efficient—can run in real time
• Lots of code available

• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Kno
wn_implementations_of_SIFT 

• But: false positive matches
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SURF

• Speeded Up Robust Features

• Approximates LoG and 
descriptor calculation in SIFT 
using Haar wavelets
• Faster computation
• Similar performance like SIFT
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Bay, Tuytelaars, Van Gool, Speeded Up Robust Features, ECCV 2006



FAST Detector

• Features from 
Accelerated Segment Test

• Check relation of 
brightness values to 
center pixel along circle

• Specific number of 
contiguous pixels brighter 
or darker than center

• Very fast corner detection
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Rosten, Drummond, Fusing Points and Lines for High Performance Tracking, ICCV 2005



BRIEF Descriptor

• Binary Robust Independent 
Elementary Features 

• Binary descriptor from intensity
comparisons at sample 
positions

• Very efficient to compute

• Fast matching distance through
Hamming distance
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Calonder, Lepetit, Strecha, Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV’10



ORB Descriptor

• Oriented Fast and Rotated BRIEF

• Combination of FAST detector 
and BRIEF descriptor

• Rotation-invariant BRIEF: 
Estimate dominant orientation 
from patch moments

• Very popular for VO
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Rublee, Rabaud, Konolige, Bradski, ORB: an efficient alternative to SIFT or SURF, ICCV 2011 



Keypoint Matching

• Match keypoints with similar descriptors
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Matching Distance

I1 I2

f1 f2

• How to define the difference between two descriptors f1, f2?
• Simple approach is to assign keypoints with maximal sum of 

square differences SSD(f1, f2) between entries of the two 
descriptors
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Matching Distance

I1 I2

• Better approach: 
best to second best ratio distance = SSD(f1, f2) / SSD(f1, f2’)
• f2 is best SSD match to f1 in I2
• f2’  is  2nd best SSD match to f1 in I2

f1 f2f2
'
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• Only accept matches with distance larger a threshold

• How to choose the threshold?

Eliminating Bad Matches

50

75

200

feature distance

false match

true match
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True/False Positives

50

75

200

feature distance

false match

true match

• Choice of threshold affects performance

• Too restrictive: less false positives (#false matches) but also less
true positives (#true matches)

• Too lax: more true positives but also more false positives

• Can we do more?
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Random Sample Consensus (RANSAC)

• Model fitting in presence of noise and outliers

• Example: fitting a line through 2D points
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• Least-squares solution, assuming constant noise for all points

RANSAC

Robotic 3D Vision

Bad!
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• We only need 2 points to fit a line. Let’s try 2 random points

RANSAC

Robotic 3D Vision

Quite ok..

7 inliers
4 outliers
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• Let’s try 2 other random points

RANSAC

Robotic 3D Vision

Quite bad..

3 inliers
8 outliers
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• Let’s try yet another 2 random points

RANSAC

Robotic 3D Vision

Quite good!

9 inliers
2 outliers
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• Let’s use the inliers of the best trial so far to perform least 
squares fitting

RANSAC

Robotic 3D Vision

Even better!
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• RANdom SAmple Consensus algorithm formalizes this idea

• Algorithm:
Input: data    ,   required #data points for fitting, success probability    , 
outlier ratio

Output: inlier set

1. Compute required number of iterations

2. For      iterations do:
1. Randomly select a subset of     data points

2. Fit model on the subset

3. Count inliers and keep model/subset with largest number of inliers

3. Refit model using found inlier set

RANSAC Algorithm
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RANSAC

Robotic 3D Vision

Required points
Outlier ratio

10% 20% 30% 40% 50% 60% 70%

Line 2 3 5 7 11 17 27 49

Plane 3 4 7 11 19 35 70 169

Essential matrix 8 9 26 78 272 1177 7025 70188

for
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Lessons Learned Today
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• Keypoint detection, description and matching is a well 
researched topic

• Highly performant corner and blob detectors exist

• Corners are optimized for localization accuracy

• Blobs have a natural notion of scale through the scale-normalized 
LoG

• ORB is currently most popular detector/descriptor combination 
for visual motion estimation

• Keypoint matching by descriptor distance

• Robust matching based on model fitting using RANSAC
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Thanks for your attention!


