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What We Will Cover Today
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• Direct visual odometry methods

• Principles of direct image alignment

• Photometric alignment

• Geometric alignment

• Direct visual odometry for RGB-D cameras

• Direct visual odometry for monocular cameras

• Semi-dense monocular odometry

• Photometric calibration

• Stereo extensions



Direct Visual Odometry Pipeline

Robotic 3D Vision

• Avoid manually designed
keypoint detection
and matching

• Instead: direct image
alignment

• Warping requires depth
• RGB-D

• Fixed-baseline stereo

• Temporal stereo, tracking
and (local) mapping
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Direct Visual Odometry Example (RGB-D)
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Direct Image Alignment Principle

Robotic 3D Vision

• If we know pixel depth, we can „simulate“ an image from a different view point

• Ideally, the warped image is the same as the image taken from that pose:
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Derivative of Image Warp

Robotic 3D Vision

Images from Kerl et al., ICRA 2013

-
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Direct RGB-D Image Alignment

Robotic 3D Vision

• RGB-D cameras measure depth, we only need to estimate camera motion!

• In addition to the photometric error

we can measure geometric error directly
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• Measurements are affected by noise

• A convenient assumption is Gaussian noise

• If we further assume that pixel measurements are stochastically independent, we can
formulate the a-posteriori probability

Probabilistic Direct Image Alignment
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• Optimize negative log-likelihood

 Product of exponentials becomes a summation over quadratic terms

 Normalizers are independent of the pose

, stacked residuals:

• Non-linear least squares problem can be efficiently optimized using standard
second-order tools (Gauss-Newton, Levenberg-Marquardt)

Optimization Approach
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Recap: Gauss-Newton Method
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• Approximate Newton’s method to minimize E(x)
• Approximate E(x) through linearization of residuals

• Find root of                                                          using Newton’s method, i.e.

• Pros:
• Faster convergence (approx. quadratic convergence rate)

• Cons:
• Divergence if too far from local optimum (H not positive definite)
• Solution quality depends on initial guess



Recap: Levenberg-Marquardt Method
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• Gradually transition between gradient descent and Gauss-Newton
• Augment Hessian approximation of Gauss-Newton (damping)

• Adaptive weighting:

• Start with 
• Accept step and decrease lambda                    if error function decreases, 

otherwise discard step and increase lambda                  (akin line search)

• Pros:
• Fast convergence close to local optimum (quadratic convergence rate close to 

optimum)
• More stable but slow convergence far from local optimum

• Cons:
• Solution quality depends on initial guess



• Requirements on pose parametrization 

 No singularities 

 Minimal to avoid constraints

• Various pose parametrizations available

 Direct matrix representation => not minimal

 Quaternion / translation => not minimal

 Euler angles / translation => singularities

 Twist coordinates of elements in Lie Algebra se(3) of SE(3)
(axis-angle / translation)

Pose Parametrization for Optimization
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• is a smooth manifold, i.e. a Lie group

• Its Lie algebra              provides an elegant way to parametrize poses for 
optimization

• Its elements                       form the tangent space of           at  at identity 

• The               elements can be interpreted as rotational and translational 
velocities (twists) 

Recap: Representing Motion using Lie Algebra 
se(3)

Robotic 3D Vision

Lie algebra

Lie group log

exp
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Recap: Exponential Map of SE(3)

Robotic 3D Vision

Lie group

Lie algebra

log

exp

• The exponential map finds the transformation matrix for a twist:
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Recap: Logarithm Map of SE(3)

Robotic 3D Vision

Lie group

Lie algebra

• The logarithm maps twists to transformation matrices:

log

exp
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Robotic 3D Vision

• Let’s define the following notation:

• Inv. of hat operator:

• Conversion:                                             ,

• Pose inversion:

• Pose concatenation:

• Pose difference:

Recap: Some Notation for Twist Coordinates
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Optimization with Twist Coordinates

Robotic 3D Vision

• Twists provide a minimal local representation without singularities 

• Since            is a smooth manifold, we can decompose transformations
in each optimization step into the transformation itself and an infinitesimal 
increment

• Example: Gradient descent on the auxiliary variable

But!
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Properties of Residual Linearization

Robotic 3D Vision

• Linearizing residuals yields

with

• Linearization is only valid for motions that change the
projection in a small image neighborhood that is captured by
the local gradient

-
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Coarse-To-Fine Optimization

Robotic 3D Vision

coarse motion

fine motion
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Residual Distributions

Robotic 3D Vision

• Gaussian noise assumption on photometric residuals oversimplifies

• Outliers (occlusions, motion, etc.):
Residuals are distributed with more mass on the larger values

- Normal distribution
- Laplace distribution
- Student-t distribution
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Images from Kerl et al., ICRA 2013
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Optimizing Non-Gaussian Measurement Noise

Robotic 3D Vision

• Can we change the residual distribution in least squares optimization?

• For specific types of distributions: yes!

• Iteratively reweighted least squares: Reweight residuals in each iteration

• Keep weights constant in each Gauss-Newton iteration

- Normal distribution
- Laplace distribution
- Student-t distribution

r

w
(r

)r
²

Laplace distribution:
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Huber Loss

Robotic 3D Vision

• Huber-loss „switches“ between Gaussian (locally at mean) and
Laplace distribution

Huber-loss for = 1

- Normal distribution
- Laplace distribution
- Student-t distribution
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• Gauss-Newton / Levenberg-Marquardt can be applied very
efficiently to direct image alignment:
 is only a 6x6 matrix

 is a 6x1 vector

 Since we treat each pixel stochastically independent from neighboring
pixels,       and        are summed over individual pixels

 This allows for highly efficient parallel processing, e.g. using a GPU

Efficient Non-Linear Least Squares
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Distribution of the Pose Estimate

Robotic 3D Vision

• Non-linear least squares determines
a Gaussian estimate

• Due to right-multiplication of pose increment , covariance
from Hessian is expressed in camera frame of

• Pose covariance in frame of can be obtained using the
adjoint in
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Algorithm: Direct RGB-D Visual Odometry

Input: RGB-D image sequence

Output: aggregated camera poses

Algorithm:

For each current RGB-D image :

1. Estimate relative camera motion by towards the previous
RGB-D frame using direct image alignment

2. Concatenate estimated camera motion with previous frame
camera pose to obtain current camera pose estimate
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Monocular Direct Visual Odometry

Robotic 3D Vision

• Estimate motion and depth concurrently

• Alternating optimization: Tracking and Mapping

Images from: Engel et al., ICCV 2013
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Semi-Dense Mapping

Robotic 3D Vision

• Estimate inverse depth and variance at high gradient pixels

• Correspondence search along epipolar line (5-pixel intensity SSD)

• Kalman-filtering of depth map:

• Propagate depth map & variance from previous frame

• Update depth map & variance with new depth observations
Images from: Engel et al., ICCV 2013
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Semi-Dense Mapping

Robotic 3D Vision

• Estimate for inverse depth uncertainty from geometric and intensity noise

Geometric noise

Images from: Engel et al., ICCV 2013

gradient
direction

epipolar line
direction

pos. variance of
epipolar line
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Semi-Dense Mapping

Robotic 3D Vision

• Estimate for inverse depth uncertainty from geometric and intensity noise

Intensity noise

Images from: Engel et al., ICCV 2013

intensity noise
variance

image gradient
magnitude at 
epipolar line
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Choosing the Stereo Reference Frame

Robotic 3D Vision

• Naive: use one
specific reference
frame (f.e. the
previous frame or a 
keyframe)

• We can also select
the reference frame
for stereo
comparisons for each
pixel individually in 
order to achieve a 
trade-off between
accuracy and
computation time

Images from: Engel et al., ICCV 2013

Heuristics from Engel et al., ICCV 2013:
Use oldest frame in which pixel still visible but disparity
search range and observation angle below threshold
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Semi-Dense Direct Image Alignment

Robotic 3D Vision

Images from: Engel et al., ICCV 2013

warped

residuals
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Algorithm: Direct Monocular Visual Odometry

Input: Monocular image sequence
Output: aggregated camera poses

Algorithm:
Initialize depth map f.e. from first two frames with a point-based
method
For each current image :
1. Estimate relative camera motion towards the previous image

with estimated semi-dense depth map using direct image
alignment

2. Concatenate estimated camera motion with previous frame camera
pose to obtain current camera pose estimate

3. Propagate semi-dense depth map from previous frame to
current frame to obtain

4. Update propagated semi-dense depth map with temporal stereo
depth measurements to obtain
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Direct Visual Odometry Example (Monocular)

Robotic 3D Vision

Engel et al., Semi-Dense Visual Odometry for a Monocular Camera, ICCV 2013
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Direct Image Alignment Revisited

Robotic 3D Vision

• If we know pixel depth, we can „simulate“ an image from a different view point

• Ideally, the warped image is the same as the image taken from that pose:

• What do we mean with „ideally“ ?
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• The objects in the scene radiate light which is focused by 
the lens onto the image sensor

• The pixels of the sensor observe an irradiance             
for an exposure time 

• The camera electronics translates the 
accumulated irradiance into intensity 
values according to a non-linear camera 
response function  

• The measured intensity is

Recap: Camera Response Function
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example inv.



• Lenses gradually focus more light at 
the center of the image than at the 
image borders

• The image appears darker towards 
the borders 

• Also called “lens attenuation”

• Lense vignetting can be modelled as
a map

• Intensity measurement model 

Recap: Vignetting
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corrected

uncorrected



Brightness Constancy Assumption Revisited
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• Camera images include vignetting effects and non-linear camera
response function

• Idea: invert vignetting and camera response function using a 
known calibration

• Perform direct image alignment on irradiance images:



Brightness Constancy Assumption Revisited
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• Automatic exposure adjustment needed in realistic environments

• Add exposure parameters explicitly to objective function: 



Direct Sparse Visual Odometry (Monocular)

Robotic 3D Vision

Engel et al., Direct Sparse Odometry, TPAMI 2017
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Direct Mapping with Stereo Cameras

Robotic 3D Vision

• For stereo cameras, we can exploit the known camera extrinsics
to estimate depth from static stereo (left-right images) in addition
to temporal stereo (successive left or right images)
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no information from 
static stereo

no information from 
temporal stereo



Direct Sparse Visual Odometry (Stereo)

Robotic 3D Vision

Wang et al., Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras, ICCV 2017
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Lessons Learned Today

Robotic 3D Vision

• Direct image alignment avoids manually designed keypoints and can
use all available image information

• Direct visual odometry
• Dense RGB-D odometry by direct image alignment with measured

depth
• Direct image alignment for monocular cameras requires depth

estimation from temporal stereo
• Stereo cameras: Direct depth estimation using static and temporal 

stereo

• Direct image alignment as non-linear least squares problem
• Linearization of the residuals requires a coarse-to-fine optimization

scheme
• SE(3) Lie algebra provides an elegant way of motion representation for

gradient-based optimization
• Iteratively reweighted least squares allows for wider set of residual 

distributions than Gaussians

• Photometric calibration and exposure parameter estimation
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Thanks for your attention!


