Robotic 3D Vision

Lecture 8: Visual Odometry 3 -Direct Methods

Prof. Dr. Jörg Stückler

Computer Vision Group, TU Munich
http://vision.in.tum.de

What We Will Cover Today

- Direct visual odometry methods
- Principles of direct image alignment
- Photometric alignment
- Geometric alignment
- Direct visual odometry for RGB-D cameras
- Direct visual odometry for monocular cameras
- Semi-dense monocular odometry
- Photometric calibration
- Stereo extensions

Direct Visual Odometry Pipeline

- Avoid manually designed keypoint detection and matching
- Instead: direct image alignment
$E(\boldsymbol{\xi})=\int_{\mathbf{u} \in \Omega}\left|\mathbf{I}_{1}(\mathbf{u})-\mathbf{I}_{2}(\omega(\mathbf{u}, \boldsymbol{\xi}))\right| d \mathbf{u}$
- Warping requires depth
- RGB-D
- Fixed-baseline stereo
- Temporal stereo, tracking
 and (local) mapping

Direct Visual Odometry Example (RGB-D)

Robust Odometry Estimation for RGB-D Cameras

Christian Kerl, Jürgen Sturm, Daniel Cremers

Computer Vision and Pattern Recognition Group Department of Computer Science
Technical University of Munich

Direct Image Alignment Principle

- If we know pixel depth, we can „simulate" an image from a different view point
- Ideally, the warped image is the same as the image taken from that pose:

$$
I_{1}(\mathbf{y})=I_{2}\left(\pi\left(\mathbf{T}(\boldsymbol{\xi}) Z_{1}(\mathbf{y}) \overline{\mathbf{y}}\right)\right)
$$

Derivative of Image Warp

$I_{1}-I_{2}$

Images from Kerl et al., ICRA 2013

Direct RGB-D Image Alignment

- RGB-D cameras measure depth, we only need to estimate camera motion!
- In addition to the photometric error

$$
I_{1}(\mathbf{y})=I_{2}\left(\pi\left(\mathbf{T}(\boldsymbol{\xi}) Z_{1}(\mathbf{y}) \overline{\mathbf{y}}\right)\right)
$$

we can measure geometric error directly

$$
\left[\mathbf{T}(\boldsymbol{\xi}) Z_{1}(\mathbf{y}) \overline{\mathbf{y}}\right]_{z}=Z_{2}\left(\pi\left(\mathbf{T}(\boldsymbol{\xi}) Z_{1}(\mathbf{y}) \overline{\mathbf{y}}\right)\right)
$$

Probabilistic Direct Image Alignment

- Measurements are affected by noise

$$
I_{1}(\mathbf{y})=I_{2}\left(\pi\left(\mathbf{T}(\boldsymbol{\xi}) Z_{1}(\mathbf{y}) \overline{\mathbf{y}}\right)\right)+\epsilon
$$

- A convenient assumption is Gaussian noise

$$
\epsilon \sim \mathcal{N}\left(0, \sigma_{I}^{2}\right)
$$

- If we further assume that pixel measurements are stochastically independent, we can formulate the a-posteriori probability

$$
\begin{aligned}
p\left(\boldsymbol{\xi} \mid I_{1}, I_{2}\right) & \propto p\left(I_{1} \mid \boldsymbol{\xi}, I_{2}\right) p(\boldsymbol{\xi}) \\
& \propto p(\boldsymbol{\xi}) \prod_{\mathbf{y} \in \Omega} \mathcal{N}\left(I_{1}(\mathbf{y})-I_{2}\left(\pi\left(\mathbf{T}(\boldsymbol{\xi}) Z_{1}(\mathbf{y}) \overline{\mathbf{y}}\right)\right) ; 0, \sigma_{I}^{2}\right)
\end{aligned}
$$

Optimization Approach

- Optimize negative log-likelihood
- Product of exponentials becomes a summation over quadratic terms
- Normalizers are independent of the pose

$$
\begin{aligned}
& E(\boldsymbol{\xi})=\sum_{\mathbf{y} \in \Omega} \frac{r(\mathbf{y}, \boldsymbol{\xi})^{2}}{\sigma_{I}^{2}}, \text { stacked residuals: } \quad E(\boldsymbol{\xi})=\mathbf{r}(\boldsymbol{\xi})^{\top} \mathbf{W r}(\boldsymbol{\xi}) \\
& r(\mathbf{y}, \boldsymbol{\xi})=I_{1}(\mathbf{y})-I_{2}\left(\pi\left(\mathbf{T}(\boldsymbol{\xi}) Z_{1}(\mathbf{y}) \overline{\mathbf{y}}\right)\right)
\end{aligned}
$$

- Non-linear least squares problem can be efficiently optimized using standard second-order tools (Gauss-Newton, Levenberg-Marquardt)

Recap: Gauss-Newton Method

- Approximate Newton's method to minimize $E(x)$
- Approximate $\mathrm{E}(\mathrm{x})$ through linearization of residuals

$$
\begin{aligned}
& \widetilde{E}(\mathbf{x})=\frac{1}{2} \widetilde{\mathbf{r}}(\mathbf{x})^{\top} \mathbf{W} \widetilde{\mathbf{r}}(\mathbf{x}) \\
& =\frac{1}{2}\left(\mathbf{r}\left(\mathbf{x}_{k}\right)+\mathbf{J}_{k}\left(\mathbf{x}-\mathbf{x}_{k}\right)\right)^{\top} \mathbf{W}\left(\mathbf{r}\left(\mathbf{x}_{k}\right)+\mathbf{J}_{k}\left(\mathbf{x}-\mathbf{x}_{k}\right)\right) \quad \mathbf{J}_{k}:=\left.\nabla_{\mathbf{x}} \mathbf{r}(\mathbf{x})\right|_{\mathbf{x}=\mathbf{x}_{k}} \\
& =\frac{1}{2} \mathbf{r}\left(\mathbf{x}_{k}\right)^{\top} \mathbf{W r}\left(\mathbf{x}_{k}\right)+\underbrace{\mathbf{r}\left(\mathbf{x}_{k}\right)^{\top} \mathbf{W} \mathbf{J}_{k}}_{=: \mathbf{b}_{k}^{\top}}\left(\mathbf{x}-\mathbf{x}_{k}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{k}\right)^{\top} \underbrace{\mathbf{J}_{k}^{\top} \mathbf{W} \mathbf{J}_{k}}_{=: \mathbf{H}_{k}}\left(\mathbf{x}-\mathbf{x}_{k}\right)
\end{aligned}
$$

- Find root of $\nabla_{\mathbf{x}} \widetilde{E}(\mathbf{x})=\mathbf{b}_{k}^{\top}+\left(\mathbf{x}-\mathbf{x}_{k}\right)^{\top} \mathbf{H}_{k}$ using Newton's method, i.e.

$$
\nabla_{\mathbf{x}} \widetilde{E}(\mathbf{x})=0 \mathrm{iff} \mathbf{x}=\mathbf{x}_{k}-\mathbf{H}_{k}^{-1} \mathbf{b}_{k}
$$

- Pros:
- Faster convergence (approx. quadratic convergence rate)
- Cons:
- Divergence if too far from local optimum (H not positive definite)
- Solution quality depends on initial guess

Recap: Levenberg-Marquardt Method

- Gradually transition between gradient descent and Gauss-Newton
- Augment Hessian approximation of Gauss-Newton (damping)

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\left(\mathbf{H}_{k}+\lambda \mathbf{I}\right)^{-1} \mathbf{b}_{k}
$$

- Adaptive weighting: $\mathbf{x}_{k+1}=\mathbf{x}_{k}-\left(\mathbf{H}_{k}+\lambda \operatorname{diag}\left(\mathbf{H}_{k}\right)\right)^{-1} \mathbf{b}_{k}$
- Start with $\lambda=0.1$
- Accept step and decrease lambda $\lambda \leftarrow \lambda / 2$ if error function decreases, otherwise discard step and increase lambda $\lambda \leftarrow 2 \lambda$ (akin line search)
- Pros:
- Fast convergence close to local optimum (quadratic convergence rate close to optimum)
- More stable but slow convergence far from local optimum
- Cons:
- Solution quality depends on initial guess

Pose Parametrization for Optimization

- Requirements on pose parametrization
- No singularities
- Minimal to avoid constraints
- Various pose parametrizations available
- Direct matrix representation => not minimal
- Quaternion / translation => not minimal
- Euler angles / translation => singularities
- Twist coordinates of elements in Lie Algebra se(3) of SE(3) (axis-angle / translation)

Recap: Representing Motion using Lie Algebra

- $\mathrm{SE}(3)$ is a smooth manifold, i.e. a Lie group
- Its Lie algebra se(3) provides an elegant way to parametrize poses for optimization
- Its elements $\widehat{\boldsymbol{\xi}} \in \mathbf{s e}(3)$ form the tangent space of $\mathbf{S E}(3)$ at identity
- The se(3) elements can be interpreted as rotational and translational velocities (twists)

Recap: Exponential Map of SE(3)

- The exponential map finds the transformation matrix for a twist:

$$
\exp (\widehat{\boldsymbol{\xi}})=\left(\begin{array}{cc}
\exp (\widehat{\boldsymbol{\omega}}) & \mathbf{A v} \\
\mathbf{0} & 1
\end{array}\right)
$$

$\exp (\widehat{\boldsymbol{\omega}})=\mathbf{I}+\frac{\sin |\omega|}{|\omega|} \widehat{\boldsymbol{\omega}}+\frac{1-\cos |\omega|}{|\omega|^{2}} \widehat{\boldsymbol{\omega}}^{2} \quad \mathbf{A}=\mathbf{I}+\frac{1-\cos |\omega|}{|\omega|^{2}} \widehat{\boldsymbol{\omega}}+\frac{|\omega|-\sin |\omega|}{|\omega|^{3}} \widehat{\boldsymbol{\omega}}^{2}$

Recap: Logarithm Map of SE(3)

- The logarithm maps twists to transformation matrices:

$$
\begin{gathered}
\log (\mathbf{T})=\left(\begin{array}{cc}
\log (\mathbf{R}) & \mathbf{A}^{-1} \mathbf{t} \\
\mathbf{0} & 0
\end{array}\right) \\
\log (\mathbf{R})=\frac{|\omega|}{2 \sin |\omega|}\left(\mathbf{R}-\mathbf{R}^{T}\right) \quad|\omega|=\cos ^{-1}\left(\frac{\operatorname{tr}(\mathbf{R})-1}{2}\right)
\end{gathered}
$$

Recap: Some Notation for Twist Coordinates

- Let's define the following notation:
- Inv. of hat operator: $\left(\begin{array}{cccc}0 & -\omega_{3} & \omega_{2} & v_{1} \\ \omega_{3} & 0 & -\omega_{1} & v_{2} \\ -\omega_{2} & \omega_{1} & 0 & v_{3} \\ 0 & 0 & 0 & 0\end{array}\right)^{\vee}=\left(\omega_{1} \omega_{2} \omega_{3} v_{1} v_{2} v_{3}\right)^{\top}$
- Conversion: $\boldsymbol{\xi}(\mathbf{T})=(\log (\mathbf{T}))^{\vee} \quad \mathbf{T}(\boldsymbol{\xi})=\exp (\hat{\boldsymbol{\xi}})$
- Pose inversion: $\boldsymbol{\xi}^{-1}=\log \left(\mathbf{T}(\boldsymbol{\xi})^{-1}\right)^{\vee}=-\boldsymbol{\xi}$
- Pose concatenation: $\boldsymbol{\xi}_{1} \oplus \boldsymbol{\xi}_{2}=\left(\log \left(\mathbf{T}\left(\boldsymbol{\xi}_{2}\right) \mathbf{T}\left(\boldsymbol{\xi}_{1}\right)\right)\right)^{\vee}$
- Pose difference: $\boldsymbol{\xi}_{1} \ominus \boldsymbol{\xi}_{2}=\left(\log \left(\mathbf{T}\left(\boldsymbol{\xi}_{2}\right)^{-1} \mathbf{T}\left(\boldsymbol{\xi}_{1}\right)\right)\right)^{\vee}$

Optimization with Twist Coordinates

- Twists provide a minimal local representation without singularities
- Since $\mathbf{S E}(3)$ a smooth manifold, we can decompose transformations in each optimization step into the transformation itself and an infinitesimal increment

$$
\mathbf{T}(\boldsymbol{\xi})=\mathbf{T}(\boldsymbol{\xi}) \exp (\widehat{\boldsymbol{\delta} \boldsymbol{\xi}})=\mathbf{T}(\boldsymbol{\delta} \boldsymbol{\xi} \oplus \boldsymbol{\xi}) \quad \mathbf{T}(\boldsymbol{\xi}+\boldsymbol{\delta} \boldsymbol{\xi}) \neq \mathbf{T}(\boldsymbol{\xi}) \mathrm{T}(\boldsymbol{\delta} \boldsymbol{\xi})
$$

- Example: Gradient descent on the auxiliary variable

$$
\begin{gathered}
\boldsymbol{\delta} \boldsymbol{\xi}^{*}=\mathbf{0}-\eta \nabla_{\delta \boldsymbol{\xi}} E\left(\boldsymbol{\xi}_{i}, \boldsymbol{\delta} \boldsymbol{\xi}\right) \\
\mathbf{T}\left(\boldsymbol{\xi}_{i+1}\right)=\mathbf{T}\left(\boldsymbol{\xi}_{i}\right) \exp \left(\widehat{\boldsymbol{\delta} \boldsymbol{\xi}^{*}}\right)
\end{gathered}
$$

Properties of Residual Linearization

$I_{1}-I_{2}$

- Linearizing residuals yields

$$
\nabla_{\xi} r(\mathbf{y}, \boldsymbol{\xi})=-\nabla_{\pi} I_{2}(\omega(\mathbf{y}, \boldsymbol{\xi})) \nabla_{\xi} \omega(\mathbf{y}, \boldsymbol{\xi})
$$

with $\omega(\mathbf{y}, \boldsymbol{\xi}):=\pi\left(\mathbf{T}(\boldsymbol{\xi}) Z_{1}(\mathbf{y}) \overline{\mathbf{y}}\right)$

- Linearization is only valid for motions that change the projection in a small image neighborhood that is captured by the local gradient

Coarse-To-Fine Optimization

Residual Distributions

- Normal distribution
- Laplace distribution
- Student-t distribution
- Gaussian noise assumption on photometric residuals oversimplifies
- Outliers (occlusions, motion, etc.):

Residuals are distributed with more mass on the larger values

Optimizing Non-Gaussian Measurement Noise

- Normal distribution
- Laplace distribution
- Student-t distribution
- Can we change the residual distribution in least squares optimization?
- For specific types of distributions: yes!
- Iteratively reweighted least squares: Reweight residuals in each iteration

$$
E(\boldsymbol{\xi})=\sum_{\mathbf{y} \in \Omega} w(r(\mathbf{y}, \boldsymbol{\xi})) \frac{r(\mathbf{y}, \boldsymbol{\xi})^{2}}{\sigma_{I}^{2}} \quad \begin{array}{ll}
\text { Laplace distribution: } \\
w(r(\mathbf{y}, \boldsymbol{\xi}))=|r(\mathbf{y}, \boldsymbol{\xi})|^{-1}
\end{array}
$$

- Keep weights constant in each Gauss-Newton iteration

Huber Loss

- Huber-loss „switches" between Gaussian (locally at mean) and Laplace distribution

$$
\|r\|_{\delta}= \begin{cases}\frac{1}{2}\|r\|_{2}^{2} & \text { if }\|r\|_{2} \leq \delta \\ \delta\left(\|r\|_{1}-\frac{1}{2} \delta\right) & \text { otherwise }\end{cases}
$$

- Normal distribution
- Laplace distribution
- Student-t distribution
............ Huber-loss for $\delta=1$

Efficient Non-Linear Least Squares

- Gauss-Newton / Levenberg-Marquardt can be applied very efficiently to direct image alignment:
$-\mathbf{H}_{i}$ is only a $6 x 6$ matrix
$-\mathbf{b}_{i}=\mathbf{J}_{i}^{\top} \mathbf{W r}\left(\boldsymbol{\xi}_{i}\right)$ is a 6×1 vector
- Since we treat each pixel stochastically independent from neighboring pixels, \mathbf{H}_{i} and \mathbf{b}_{i} are summed over individual pixels

$$
\begin{gathered}
\mathbf{H}_{i}=\sum_{\mathbf{y} \in \Omega} \frac{w\left(\mathbf{y}, \boldsymbol{\xi}_{i}\right)}{\sigma_{I}^{2}} \mathbf{J}_{i, \mathbf{y}}^{\top} \mathbf{J}_{i, \mathbf{y}} \quad \mathbf{b}_{i}=\sum_{\mathbf{y} \in \Omega} \mathbf{J}_{i, \mathbf{y}}^{\top} \frac{w\left(\mathbf{y}, \boldsymbol{\xi}_{i}\right)}{\sigma_{I}^{2}} r\left(\mathbf{y}, \boldsymbol{\xi}_{i}\right) \\
\mathbf{J}_{i, \mathbf{y}}:=\nabla_{\delta \boldsymbol{\xi}} r\left(\mathbf{y}, \boldsymbol{\delta} \boldsymbol{\xi} \oplus \boldsymbol{\xi}_{i}\right)
\end{gathered}
$$

- This allows for highly efficient parallel processing, e.g. using a GPU

Distribution of the Pose Estimate

- Non-linear least squares determines a Gaussian estimate

$$
\begin{aligned}
p\left(\boldsymbol{\xi} \mid I_{1}, I_{2}\right) & =\mathcal{N}\left(\boldsymbol{\mu}_{\boldsymbol{\xi}}, \boldsymbol{\Sigma}_{\boldsymbol{\xi}}\right) \\
\boldsymbol{\Sigma}_{\boldsymbol{\xi}} & =\left(\nabla_{\xi} \mathbf{r}(\boldsymbol{\xi})^{\top} \mathbf{W} \nabla_{\xi} \mathbf{r}(\boldsymbol{\xi})\right)^{-1}
\end{aligned}
$$

- Due to right-multiplication of pose increment $\boldsymbol{\delta} \boldsymbol{\xi}$, covariance from Hessian is expressed in camera frame of I_{1}
- Pose covariance in frame of I_{2} can be obtained using the adjoint in $\mathbf{S E}(3)$

$$
\begin{aligned}
p\left(\boldsymbol{\xi} \mid I_{1}, I_{2}\right) & =\mathcal{N}\left(\boldsymbol{\mu}_{\xi}, \operatorname{ad}_{\mathbf{T}(\boldsymbol{\xi})} \boldsymbol{\Sigma}_{\boldsymbol{\delta} \boldsymbol{\xi}} \operatorname{ad}_{\mathbf{T}(\boldsymbol{\xi})}^{\top}\right) \\
\boldsymbol{\Sigma}_{\boldsymbol{\delta} \boldsymbol{\xi}} & =\left(\begin{array}{cc}
\left.\nabla_{\delta \xi} \mathbf{r}(\boldsymbol{\delta} \boldsymbol{\xi}, \boldsymbol{\xi})^{\top} \mathbf{W} \nabla_{\delta \xi} \mathbf{r}(\boldsymbol{\delta} \boldsymbol{\xi}, \boldsymbol{\xi})\right)^{-1} \\
\operatorname{ad}_{\mathbf{T}(\boldsymbol{\xi})} & =\left(\begin{array}{cc}
\mathbf{R}(\boldsymbol{\xi}) & 0 \\
\hat{\boldsymbol{t}} \mathbf{R}(\boldsymbol{\xi}) & \mathbf{R}(\boldsymbol{\xi})
\end{array}\right)
\end{array}, \quad\right. \text {. }
\end{aligned}
$$

Algorithm: Direct RGB-D Visual Odometry

Input: RGB-D image sequence $I_{0: t}, Z_{0: t}$
Output: aggregated camera poses $\mathbf{T}_{0: t}$

Algorithm:
For each current RGB-D image I_{k}, Z_{k} :

1. Estimate relative camera motion \mathbf{T}_{k}^{k-1} towards the previous RGB-D frame using direct image alignment $\mathbf{T}_{k}=\mathbf{T}_{k-1} \mathbf{T}_{k}^{k-1}$
2. Concatenate estimated camera motion with previous frame camera pose to obtain current camera pose estimate

Monocular Direct Visual Odometry

- Estimate motion and depth concurrently

- Alternating optimization: Tracking and Mapping

Semi-Dense Mapping

- Estimate inverse depth and variance at high gradient pixels
- Correspondence search along epipolar line (5-pixel intensity SSD)

- Kalman-filtering of depth map:
- Propagate depth map \& variance from previous frame
- Update depth map \& variance with new depth observations

Semi-Dense Mapping

- Estimate for inverse depth uncertainty from geometric and intensity noise

Geometric noise

$$
\sigma_{\lambda(\xi, \pi)}^{2}=\frac{\sigma_{l}^{2}}{\langle g, l\rangle^{2}} \underset{\substack{\text { gradient } \\ \text { direction }}}{\substack{\text { pos. variance of } \\ \text { epipolar line }}}
$$

Semi-Dense Mapping

- Estimate for inverse depth uncertainty from geometric and intensity noise

Intensity noise

$$
\sigma_{\lambda(I)}^{2}=\frac{2 \sigma_{i}^{2}}{g_{p}^{2}} \longleftarrow \begin{gathered}
\text { intensity noise } \\
\text { variance }
\end{gathered}
$$

Choosing the Stereo Reference Frame

- Naive: use one specific reference frame (f.e. the previous frame or a keyframe)
- We can also select the reference frame for stereo comparisons for each pixel individually in order to achieve a trade-off between accuracy and computation time

Heuristics from Engel et al., ICCV 2013:
Use oldest frame in which pixel still visible but disparity search range and observation angle below threshold

Semi-Dense Direct Image Alignment

$$
E(\boldsymbol{\xi})=\sum_{\mathbf{y} \in \Omega^{Z}} w(r(\mathbf{y}, \boldsymbol{\xi})) \frac{r(\mathbf{y}, \boldsymbol{\xi})^{2}}{\sigma_{Z(\mathbf{y})}^{2}}
$$

$$
r(\mathbf{y}, \boldsymbol{\xi})=I_{1}(\mathbf{y})-I_{2}\left(\pi\left(\mathbf{T}(\boldsymbol{\xi}) Z_{1}(\mathbf{y}) \overline{\mathbf{y}}\right)\right)
$$

Images from: Engel et al., ICCV 2013

Algorithm: Direct Monocular Visual Odometry

Input: Monocular image sequence $I_{0: t}$
Output: aggregated camera poses $\mathrm{T}_{0: t}$

Algorithm:

Initialize depth map Z_{0} f.e. from first two frames with a point-based method
For each current image I_{k} :

1. Estimate relative camera motion T_{k}^{k-1} towards the previous image with estimated semi-dense depth map Z_{k-1} using direct image alignment
2. Concatenate estimated camera motion with previous frame camera pose to obtain current camera pose estimate $\mathbf{T}_{k}=\mathbf{T}_{k-1} \mathbf{T}_{k}^{k-1}$
3. Propagate semi-dense depth map Z_{k-1} from previous frame to current frame to obtain \widetilde{Z}_{k}
4. Update propagated semi-dense depth map \widetilde{Z}_{k} with temporal stereo depth measurements to obtain Z_{k}

Direct Visual Odometry Example (Monocular)

Direct Image Alignment Revisited

- If we know pixel depth, we can „simulate" an image from a different view point
- Ideally, the warped image is the same as the image taken from that pose:

$$
I_{1}(\mathbf{y})=I_{2}\left(\pi\left(\mathbf{T}(\boldsymbol{\xi}) Z_{1}(\mathbf{y}) \overline{\mathbf{y}}\right)\right)
$$

- What do we mean with „ideally" ?

Recap: Camera Response Function

- The objects in the scene radiate light which is focused by the lens onto the image sensor
- The pixels of the sensor observe an irradiance $B: \Omega \rightarrow \mathbb{R}$ for an exposure time t
example inv. G
- The camera electronics translates the accumulated irradiance into intensity values according to a non-linear camera response function $G: \mathbb{R} \rightarrow[0,255]$

- The measured intensity is $I(\mathbf{x})=G(t B(\mathbf{x}))$

Recap: Vignetting

- Lenses gradually focus more light at the center of the image than at the image borders
- The image appears darker towards the borders
- Also called "lens attenuation"
- Lense vignetting can be modelled as a map $V: \Omega \rightarrow[0,1]$

- Intensity measurement model

$$
\begin{equation*}
I(\mathbf{x})=G(t V(\mathbf{x}) B(\mathbf{x})) \tag{x}
\end{equation*}
$$

Brightness Constancy Assumption Revisited

- Camera images include vignetting effects and non-linear camera response function
- Idea: invert vignetting and camera response function using a known calibration
- Perform direct image alignment on irradiance images:

$$
I^{\prime}(\mathbf{y})=t B(\mathbf{y})=\frac{G^{-1}(I(\mathbf{y}))}{V(\mathbf{y})}
$$

Brightness Constancy Assumption Revisited

- Automatic exposure adjustment needed in realistic environments
- Add exposure parameters explicitly to objective function:

$$
\left(I_{2}\left(\omega\left(\mathbf{y}, \boldsymbol{\xi}, Z_{1}(\mathbf{y})\right)\right)-b_{2}\right)-\frac{t_{2} \exp \left(a_{2}\right)}{t_{1} \exp \left(a_{1}\right)}\left(I_{1}(\mathbf{y})-b_{1}\right)
$$

Direct Sparse Visual Odometry (Monocular)

Direct Sparse Odometry

 Jakob Engel, ${ }^{1,2}$ Vladlen Koltun², Daniel Cremers ${ }^{1}$ July 2016

Direct Mapping with Stereo Cameras

- For stereo cameras, we can exploit the known camera extrinsics to estimate depth from static stereo (left-right images) in addition to temporal stereo (successive left or right images)

Direct Sparse Visual Odometry (Stereo)

Large-Scale Direct Sparse Visual Odometry with Stereo Cameras

Rui Wang*, Martin Schwörer*, Daniel Cremers
ICCV 2017, Venice

Computer Vision Group

Lessons Learned Today

- Direct image alignment avoids manually designed keypoints and can use all available image information
- Direct visual odometry
- Dense RGB-D odometry by direct image alignment with measured depth
- Direct image alignment for monocular cameras requires depth estimation from temporal stereo
- Stereo cameras: Direct depth estimation using static and temporal stereo
- Direct image alignment as non-linear least squares problem
- Linearization of the residuals requires a coarse-to-fine optimization scheme
- SE(3) Lie algebra provides an elegant way of motion representation for gradient-based optimization
- Iteratively reweighted least squares allows for wider set of residual distributions than Gaussians
- Photometric calibration and exposure parameter estimation

Thanks for your attention!

