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What We Will Cover Today
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• Visual-Inertial Odometry (VIO)

• Introduction

• Inertial Measurement Units

• Loosely vs. tightly coupled VIO

• VIO approaches

• Filtering

• Full-posterior optimization

• Fixed-lag smoothing



Why Sensor Fusion for Odometry?
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• Visual sensors have limitations

• Rapid motion causes motion blur: less 
accuracy/robustness

• Degenerate motion/reconstruction in 
textureless areas

• Illumination conditions

• Limited frame-rate (30-60Hz for typical 
cameras)

• Monocular vision: scale ambiguity

• Idea: complement visual motion 
estimation with other sensing modalities



Inertial Measurement Units
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• Inertial Measurement Units (IMUs) measure 3-axis linear 
accelerations and angular velocities of the sensor wrt the earth 
(inertial) reference frame

• Mechanical, optical and micro-electro-
mechanical systems (MEMS) sensors

• Robotics: 

• MEMS sensors are cheap, small, 
lightweight, power-efficient, 
solid state and often sufficiently 
accurate/robust

Mechanical IMU of Saturn rocket



Gyroscopes
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• Historically, first gyroscopes have been 
mechanical devices

• Today also MEMS technology

• Measure displacement by 
Coriolis force of rotary 
vibrating structure 
through capacitive electrodes

Mechanical IMU of Saturn rocket

Fiber Optic Gyroscope
MEMS Gyroscope (ST LYPR540AH)



Accelerometers
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• MEMS accelerometers
measure displacement of
spring mounted fin structure
using capacitive electrodes

• Fin structure moves due to
accelerations

3-axis ADXL 335 MEMS accelerometer



IMU Odometry
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• Idea: integrate rotational velocities and double-integrate 
accelerations to estimate position

• This will lead to large drift, especially for cheap IMUs!

• Intuition (math later):

• Integration of angular velocity: orientation error proportional in t

• Double-integration of linear accelerations: position error proportional 
in t^2

• Gyro and accelerometer measurements are biased, additional error

• Orientation errors cause further position error (why?)

http://www.vectornav.com/support/library/imu-and-ins



Visual-Inertial Fusion
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• Vision and IMU are complementary!

• Odometry using both sensor types is still prone to drift!

Visual sensing Inertial sensing

+ Accurate at small to medium motion - Large relative uncertainty for low
acceleration/angular velocity

+ Rich information for other purposes

- Limited output rate (~100Hz) + High output rate (~1000Hz)

- Scale ambiguity for monocular camera + Scale directly observable

- Lack of robustness for rapid motion, 
textureless areas, low illumination

+ Independent of environmental 
conditions



IMU Measurement Model
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• IMU measures angular velocity      and linear acceleration      in 
“body” frame:

• B: body frame, W: world frame

• Left subscript X: quantity expressed in frame X

• Right subscript X, superscript Y: quantity of frame X wrt frame Y

• Bias terms               and 

• Noise terms             and



IMU Noise Model
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• Noise terms              and

• Zero-mean Gaussian noise

• Bias terms              and

• Bias drifts due to temperature change, pressure change, etc.

• Random walk (derivative is Gaussian white noise)

• Bias needs to be estimated as well!



IMU Integration
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• Per-component integration

• Integrate gyro measurements to obtain rotation

• Double-integrate accelerations based on rotation estimate

• Problems:

• Requires known biases

• Requires known initial rotation

• Does not make use of known gravity direction for rotation estimate



Camera-IMU System
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• Extrinsic calibration between camera(s) and IMU frame

• Time synchronization

WB (IMU)

C1 (camera)

C0 
(camera)

Skybotix VI-Sensor



Factor Graph of Visual-Inertial Odometry
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(Keyframe-based)



Loosely vs. Tightly Coupled Fusion
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• Different paradigms to fuse visual and inertial measurements

• Loosely coupled: fuse estimates of individual sensors

• First estimate pose independently from each sensor type

• Fuse the pose estimates 

• Tightly coupled: estimate state directly from measurements of 
both sensors

• Fuse raw measurements, i.e. IMU measurements, keypoints, direct 
image alignment, etc.

• Examples:

• Combined error function of reprojection and IMU residuals

• Prediction with IMU to confine image search regions for keypoint
matching

• More accurate but higher implementation effort



State Estimation Approaches
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Filtering Fixed-Lag Smoothing Maximum-A-Posteriori 
(MAP) Estimation

Recursive Bayesian
filtering of the most
recent state (e.g. Kalman 
Filter)

Optimize window of
states through non-linear 
optimization and 
marginalization of old
states

Full posterior
optimization of all states
through non-linear least 
squares

- Single linearization + Relinearize (in window) + Relinearize

- Accumulation of
linearization errors

- Accumulation of
linearization errors

+ Sparse Matrices

- Gaussian approximation
of marginalized states

- Gaussian approximation
of marginalized states

+ Highest Accuracy

+ Faster + Fast + Slow



Recap: Extended Kalman Filter (EKF)
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• Non-linear state-transition model with Gaussian noise:

• Non-linear observation model with Gaussian noise:

• How to cope with non-linear system?

• Idea: linearize the models in each time step



Recap: EKF Prediction & Correction
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• Efficient approximate correction and prediction steps which 
involve manipulation of Gaussians and linearization

• The state estimate can be represented as a Gaussian distribution

• Prediction:

• Correction:

:

:



Tightly-Coupled Filter for Visual-Inertial Fusion
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• State-transition model: IMU model integration + noise

• Use IMU model as state-transition model

• Integrate measurements to propagate state

• Approximate Gaussian noise in propagated state



Tightly-Coupled Filter for Visual-Inertial Fusion
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• Measurement model: visual measurements

• Example: keypoint reprojections

• Requires 3D landmark positions in state



Tightly-Coupled Filter for Visual-Inertial Fusion
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• Photoconsistency measurements of landmark patch projections



Drawbacks of Filter-based Approaches
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• Linearization errors

• Linearization with the current state estimate introduces 
linearization erros

• Marginalization of old states, no reoptimization or relinearization
possible

• Leads to inconsistency of the mean/covariance estimate

• Wrong covariances/initial states

• Modeled noise in measurement and state-transition may be 
inaccurate

• Leads to over- or underconfident estimates

• Number of visual landmarks needs to be limited due to quadratic 
run-time in state variable dimension



Multi-State Constraint Kalman Filter
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• Mourikis and Roumeliotis, A Multi-State Constraint Kalman Filter 
for Vision-aided Inertial Navigation, ICRA 2007

• Visual-inertial filter without landmarks in the state

• Include a window of current positions, velocities, biases and 
rotations into state

• Perform local least-squares estimate to reconstruct keypoint
matches observed in multiple cameras of the optimization window

• Add measurement residuals for each camera pose and 
reconstructed keypoints (needs decorrelation of pose errors and 
feature position errors in residuals)  



Multi-State Constraint Kalman Filter
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M. Shelley, MSc thesis, TUM



Recap: Full State Posterior Factorization
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• The full state posterior factorizes into a product of observation 
likelihoods, state-transition likelihoods and the initial state 
distribution
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Recap: Full State Posterior – Non-Linear 
Gaussian Case
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• Non-linear state-transition model with Gaussian noise:

• Non-linear observation model with Gaussian noise:

• Gaussian initial state estimate:
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Recap: Non-Linear Least Squares
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• We can rewrite the negative log-posterior as a non-linear least 
squares problem:

• Stack residuals in residual vector      

• Inverse covariances in block-diagonal weight matrix

• Optimization approaches:
• Gradient descent

• Gauss-Newton

• Levenberg-Marquardt

• etc.



Recap: Gauss-Newton Method
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• Idea: Approximate Newton’s method to minimize E(x)
• Approximate E(x) through linearization of residuals

• Find root of                                                          using Newton’s method, i.e.

• Pros:
• Faster convergence (approx. quadratic convergence rate)

• Cons:
• Divergence if too far from local optimum (H not positive definite)
• Solution quality depends on initial guess



Full State Posterior Optimization
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• Idea: use state-transition and measurement models to formulate 
non-linear least squares optimization problem to obtain a full 
state posterior estimate

• Requires iterative reintegration and relinearization
• Relinearize in each iteration in current state estimate

• Slow but more accurate than filter

• Evaluation of the state-transition residuals requires integration of 
the state-variables at time t+1 from IMU measurements and state 
estimate at time t

• Optimization problem quickly becomes large (and slow)



IMU Preintegration
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• State-transitions need to be reintegrated in each time step due 
to its dependency of the formulation on the start state 
• Start state is expressed in the world frame

• Start state changes due to optimization

• Integrate “relative motion”                                               between 
frames, starting at zero motion:

• Compare with relative motion between estimates

• Neglecting small changes in bias, “preintegration” becomes 
possible



Fixed-Lag Smoothing
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• Still, optimizing the full state posterior is too slow for real-time 
odometry

• Can we…
• … efficiently optimize a window of frames as in non-linear least 

squares?

• … marginalize old state variables as in filtering?

• Let’s look closer at the Gauss-Newton update step…



Fixed-Lag Smoothing
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• Let’s look closer at the Gauss-Newton update step…

• We need to invert the Hessian H to solve for the update on x

• Can we reduce the system of linear equations to update only a 
small set of state variables in a recent optimization window?

• Idea: Apply the Schur complement (corresponds to 
marginalization of the Gaussian full state estimate)



Marginalization of Old States
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• Let’s look closer at the Gauss-Newton update step…

• We need to invert the Hessian H to solve for the update on x

• We can solve for           using the Schur complement of          in H:



Pros and Cons of Fixed-Lag Smoothing
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• Marginalization leads to fill-in of the Hessian (will see later why it 
is sparse initially)
• Inversion (of submatrices) gets more costly

• Dropping of states (e.g. landmarks) avoids fill-in but reduces 
accuracy
• Trade-off between accuracy and efficiency

• Marginalization fixes the linearization point of the marginalized 
state variables
• Linearization errors cannot be corrected

• Variables may be linearized multiple times at different values

• Estimate becomes inconsistent/inaccurate



Indirect Fixed-Lag Smoothing Example
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• OKVIS: Keyframe-based indirect fixed-lag smoothing VIO



Direct Fixed-Lag Smoothing Example
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• Direct Fixed-Lag Smoothing VIO



Fixed-Lag Smoothing Example Results
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Lessons Learned Today

Robotic 3D Vision

• Vision and inertial sensors complement each others well for
accurate and robust visual-inertial odometry (VIO)

• Loosely-coupled vs. tightly coupled VIO

• Filtering-based methods are fast but can only optimize the
state variables of the most recent time step

• Full state posterior optimization too slow for real-time 
performance, but most accurate

• Fixed-lag smoothing as a trade-off: 

• optimization of a window of recent time steps

• marginalization of old states
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Further Reading

Robotic 3D Vision

• Visual-Inertial Odometry

• Filtering: 

• Bloesch et al., Robust Visual Inertial Odometry Using a Direct EKF-
Based Approach, IROS 2015

• Mourikis and Roumeliotis, A multi-state constraint Kalman filter for
vision-aided inertial navigation, ICRA 2007

• Fixed-lag smoothing:

• Leutenegger et al., Keyframe-based visual–inertial odometry using 
nonlinear optimization, IJRR 2014

• Usenko et al., Direct Visual-Inertial Odometry with Stereo Cameras, 
ICRA 2016

• IMU Preintegration

• Forster et al., IMU Preintegration on Manifold for Efficient Visual-
Inertial Maximum-a-Posteriori Estimation, RSS 2015
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Thanks for your attention!


