

Computer Vision Group Prof. Daniel Cremers

Robotic 3D Vision

Lecture 9: Visual-Inertial Odometry

Prof. Dr. Jörg Stückler Computer Vision Group, TU Munich http://vision.in.tum.de

What We Will Cover Today

- Visual-Inertial Odometry (VIO)
 - Introduction
 - Inertial Measurement Units
 - Loosely vs. tightly coupled VIO
- VIO approaches
 - Filtering
 - Full-posterior optimization
 - Fixed-lag smoothing

Why Sensor Fusion for Odometry?

- Visual sensors have limitations
 - Rapid motion causes motion blur: less accuracy/robustness
 - Degenerate motion/reconstruction in textureless areas
 - Illumination conditions
 - Limited frame-rate (30-60Hz for typical cameras)
 - Monocular vision: scale ambiguity
- Idea: complement visual motion estimation with other sensing modalities

Inertial Measurement Units

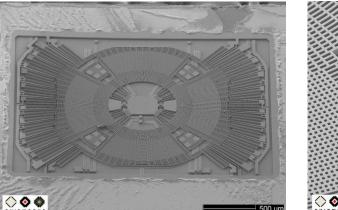
- Inertial Measurement Units (IMUs) measure 3-axis linear accelerations and angular velocities of the sensor wrt the earth (inertial) reference frame
- Mechanical, optical and micro-electromechanical systems (MEMS) sensors
- Robotics:
 - MEMS sensors are cheap, small, lightweight, power-efficient, solid state and often sufficiently accurate/robust

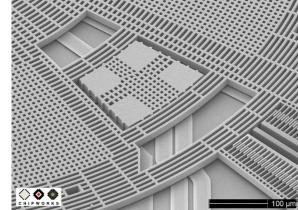
Mechanical IMU of Saturn rocket

Gyroscopes

- Historically, first gyroscopes have been mechanical devices
- Today also MEMS technology
 - Measure displacement by Coriolis force of rotary vibrating structure through capacitive electrodes

Mechanical IMU of Saturn rocket



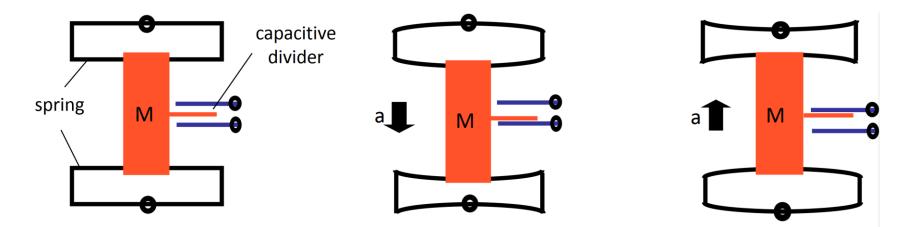


MEMS Gyroscope (ST LYPR540AH)

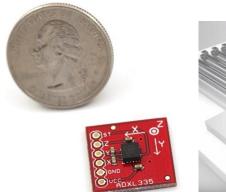
Fiber Optic Gyroscope

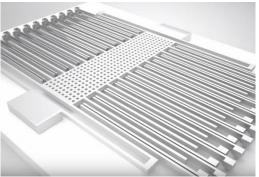
Robotic 3D Vision

Accelerometers



- MEMS accelerometers measure displacement of spring mounted fin structure using capacitive electrodes
- Fin structure moves due to accelerations





3-axis ADXL 335

MEMS accelerometer

IMU Odometry

- Idea: integrate rotational velocities and double-integrate accelerations to estimate position
- This will lead to large drift, especially for cheap IMUs!
 - Intuition (math later):
 - Integration of angular velocity: orientation error proportional in t
 - Double-integration of linear accelerations: position error proportional in t²
 - Gyro and accelerometer measurements are biased, additional error
 - Orientation errors cause further position error (why?)

	Accelerometer Bias Error	Horizontal Position Error [m]			
Grade	[mg]	1 s	10s	60s	1hr
Navigation	0.025	0.13 mm	12 mm	0.44 m	1.6 km
Tactical	0.3	1.5 mm	150 mm	5.3 m	19 km
Industrial	3	15 mm	1.5 m	53 m	190 km
Automotive	125	620 mm	60 m	2.2 km	7900 km

http://www.vectornav.com/support/library/imu-and-ins

Visual-Inertial Fusion

• Vision and IMU are complementary!

Visual sensing	Inertial sensing	
+ Accurate at small to medium motion	 Large relative uncertainty for low acceleration/angular velocity 	
+ Rich information for other purposes		
- Limited output rate (~100Hz)	+ High output rate (~1000Hz)	
- Scale ambiguity for monocular camera	+ Scale directly observable	
 Lack of robustness for rapid motion, textureless areas, low illumination 	+ Independent of environmental conditions	

• Odometry using both sensor types is still prone to drift!

IMU Measurement Model

• IMU measures angular velocity ω and linear acceleration a in "body" frame:

$${}_{B}\widetilde{\boldsymbol{\omega}}_{B}^{W}(t) =_{B} \boldsymbol{\omega}_{B}^{W}(t) + \mathbf{b}_{\boldsymbol{\omega}}(t) + \boldsymbol{\epsilon}_{\boldsymbol{\omega}}(t)$$
$${}_{B}\widetilde{\mathbf{a}}_{B}^{W} = \mathbf{R}_{W}^{B}(t) \left({}_{W}\mathbf{a}_{B}^{W}(t) - {}_{W}\mathbf{g} \right) + \mathbf{b}_{\mathbf{a}}(t) + \boldsymbol{\epsilon}_{\mathbf{a}}(t)$$

- B: body frame, W: world frame
- Left subscript X: quantity expressed in frame X
- Right subscript X, superscript Y: quantity of frame X wrt frame Y
- Bias terms $\mathbf{b}_{oldsymbol{\omega}}(t)$ and $\mathbf{b}_{\mathbf{a}}(t)$
- Noise terms $\epsilon_{oldsymbol{\omega}}(t)$ and $\epsilon_{\mathbf{a}}(t)$

IMU Noise Model

- Noise terms $\boldsymbol{\epsilon}_{\boldsymbol{\omega}}(t)$ and $\boldsymbol{\epsilon}_{\mathbf{a}}(t)$
 - Zero-mean Gaussian noise
- Bias terms $\mathbf{b}_{\boldsymbol{\omega}}(t)$ and $\mathbf{b}_{\mathbf{a}}(t)$
 - Bias drifts due to temperature change, pressure change, etc.
 - Random walk (derivative is Gaussian white noise)

$$\dot{\mathbf{b}}_{\boldsymbol{\omega}}(t) = \delta_{\boldsymbol{\omega}}(t) \qquad \delta_{\boldsymbol{\omega}}(t) \sim \mathcal{N}(0, \Delta t \sigma_{\boldsymbol{\omega}}^2)$$
$$\dot{\mathbf{b}}_{\mathbf{a}}(t) = \delta_{\mathbf{a}}(t) \qquad \delta_{\mathbf{a}}(t) \sim \mathcal{N}(0, \Delta t \sigma_{\mathbf{a}}^2)$$

• Bias needs to be estimated as well!

IMU Integration

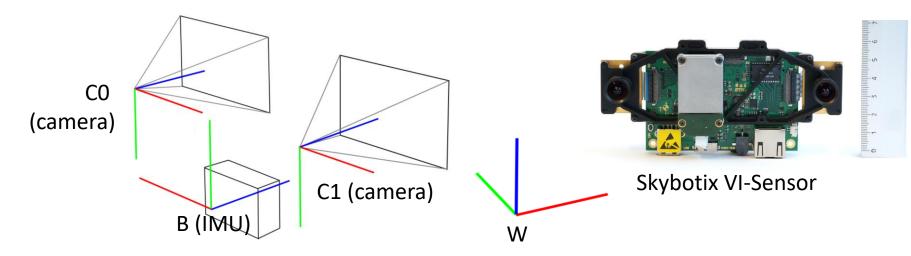
- Per-component integration
- Integrate gyro measurements to obtain rotation
- Double-integrate accelerations based on rotation estimate

$$\mathbf{p}(t_2) = \mathbf{p}(t_1) + \mathbf{v}(t_1)(t_2 - t_1) + \int \int_{t_1}^{t_2} \mathbf{R}(t) \left(\widetilde{\mathbf{a}}(t) - \mathbf{b}_{\mathbf{a}}(t)\right) + \mathbf{g} dt^2$$

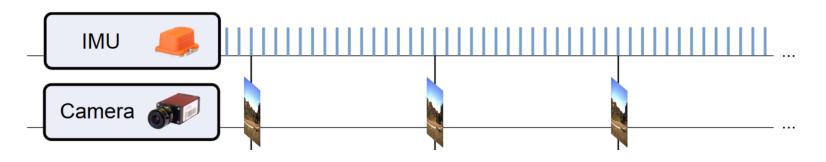
- Problems:
 - Requires known biases
 - Requires known initial rotation
 - Does not make use of known gravity direction for rotation estimate

Camera-IMU System

• Extrinsic calibration between camera(s) and IMU frame

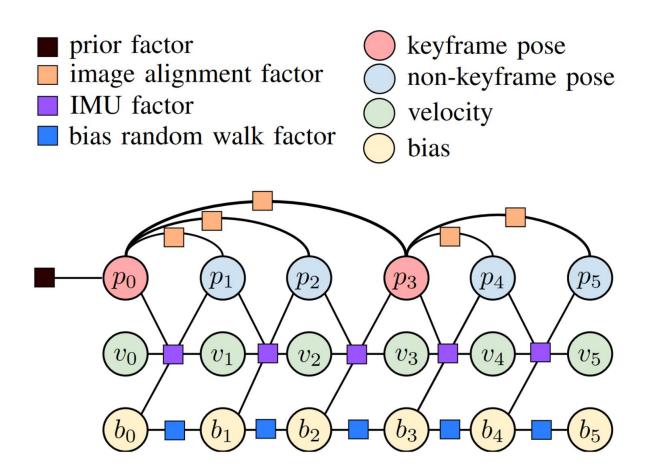


Time synchronization



Factor Graph of Visual-Inertial Odometry

(Keyframe-based)



Loosely vs. Tightly Coupled Fusion

- Different paradigms to fuse visual and inertial measurements
- Loosely coupled: fuse estimates of individual sensors
 - First estimate pose independently from each sensor type
 - Fuse the pose estimates
- Tightly coupled: estimate state directly from measurements of both sensors
 - Fuse raw measurements, i.e. IMU measurements, keypoints, direct image alignment, etc.
 - Examples:
 - Combined error function of reprojection and IMU residuals
 - Prediction with IMU to confine image search regions for keypoint matching
 - More accurate but higher implementation effort

State Estimation Approaches

Filtering	Fixed-Lag Smoothing	Maximum-A-Posteriori (MAP) Estimation
Recursive Bayesian filtering of the most recent state (e.g. Kalman Filter)	Optimize window of states through non-linear optimization and marginalization of old states	Full posterior optimization of all states through non-linear least squares
- Single linearization	+ Relinearize (in window)	+ Relinearize
 Accumulation of linearization errors 	 Accumulation of linearization errors 	+ Sparse Matrices
 Gaussian approximation of marginalized states 	 Gaussian approximation of marginalized states 	+ Highest Accuracy
+ Faster	+ Fast	+ Slow

Recap: Extended Kalman Filter (EKF)

• Non-linear state-transition model with Gaussian noise:

$$\mathbf{x}_t = g(\mathbf{x}_{t-1}, \mathbf{u}_t) + \boldsymbol{\epsilon}_t \qquad \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{d_t})$$

- Non-linear observation model with Gaussian noise: $\mathbf{y}_t = h(\mathbf{x}_t) + \boldsymbol{\delta}_t$ $\boldsymbol{\delta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{m_t})$
- How to cope with non-linear system?
- Idea: linearize the models in each time step

$$\implies \mathbf{x}_t \approx g(\mathbf{x}_{t-1}^0, \mathbf{u}_t) + \nabla g(\mathbf{x}, \mathbf{u}_t)|_{\mathbf{x} = \mathbf{x}_{t-1}^0} \left(\mathbf{x}_{t-1} - \mathbf{x}_{t-1}^0 \right) + \boldsymbol{\epsilon}_t$$

$$\mathbf{\mathbf{y}}_t \approx h(\mathbf{x}_t^0) + \nabla h(\mathbf{x})|_{\mathbf{x}=\mathbf{x}_t^0} \left(\mathbf{x}_t - \mathbf{x}_t^0\right) + \boldsymbol{\delta}_t$$

Recap: EKF Prediction & Correction

- Efficient approximate correction and prediction steps which involve manipulation of Gaussians and linearization
- The state estimate can be represented as a Gaussian distribution

$$\mathbf{x}_t \sim \mathcal{N}(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t)$$

• Prediction:
$$\boldsymbol{\mu}_t^- = g(\boldsymbol{\mu}_{t-1}^+, \mathbf{u}_t)$$

 $\boldsymbol{\Sigma}_t^- = \mathbf{G}_t \boldsymbol{\Sigma}_{t-1}^+ \mathbf{G}_t^\top + \boldsymbol{\Sigma}_{d_t}$ $\mathbf{G}_t \coloneqq \nabla g(\mathbf{x}, \mathbf{u}_t)|_{\mathbf{x} = \boldsymbol{\mu}_{t-1}^+}$

• Correction: $\mathbf{K}_t = \mathbf{\Sigma}_t^- \mathbf{H}_t^\top \left(\mathbf{H}_t \mathbf{\Sigma}_t^- \mathbf{H}_t^\top + \mathbf{\Sigma}_{m_t} \right)^{-1}$ $\boldsymbol{\mu}_t^+ = \boldsymbol{\mu}_t^- + \mathbf{K}_t \left(\mathbf{y}_t - h(\boldsymbol{\mu}_t^-) \right) \qquad \mathbf{H}_t := \nabla h(\mathbf{x})|_{\mathbf{x} = \boldsymbol{\mu}_t^-}$ $\mathbf{\Sigma}_t^+ = \left(\mathbf{I} - \mathbf{K}_t \mathbf{H}_t \right) \mathbf{\Sigma}_t^-$

Tightly-Coupled Filter for Visual-Inertial Fusion

- State-transition model: IMU model integration + noise
- Use IMU model as state-transition model

$$\begin{split} {}_{B}\widetilde{\boldsymbol{\omega}}_{B}^{W}(t) &=_{B} \boldsymbol{\omega}_{B}^{W}(t) + \mathbf{b}_{\boldsymbol{\omega}}(t) + \boldsymbol{\epsilon}_{\boldsymbol{\omega}}(t) \\ {}_{B}\widetilde{\mathbf{a}}_{B}^{W}(t) &= \mathbf{R}_{W}^{B} \left({}_{W}\mathbf{a}_{B}^{W}(t) - {}_{W}\mathbf{g} \right) + \mathbf{b}_{\mathbf{a}}(t) + \boldsymbol{\epsilon}_{\mathbf{a}}(t) \\ \dot{\mathbf{b}}_{\boldsymbol{\omega}}(t) &= \delta_{\boldsymbol{\omega}}(t) \\ \dot{\mathbf{b}}_{\mathbf{a}}(t) &= \delta_{\mathbf{a}}(t) \end{split}$$

• Integrate measurements to propagate state

 $\mathbf{p}(t_2) = \mathbf{p}(t_1) + \mathbf{v}(t_1)(t_2 - t_1) + \int \int_{t_1}^{t_2} \mathbf{R}(t) \left(\widetilde{\mathbf{a}}(t) - \mathbf{b}_{\mathbf{a}}(t)\right) - \mathbf{g} dt^2$

• Approximate Gaussian noise in propagated state

Tightly-Coupled Filter for Visual-Inertial Fusion

- Measurement model: visual measurements
 - Example: keypoint reprojections $\mathbf{y}_t = h(\mathbf{x}_t) + \boldsymbol{\delta}_t \qquad \boldsymbol{\delta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{m_t})$
 - Requires 3D landmark positions in state $\mathbf{x}_t = (\mathbf{p}_t, \mathbf{R}_t, \mathbf{v}_t, \boldsymbol{\omega}_t, \mathbf{l}_{t,1}, \dots, \mathbf{l}_{t,N})$

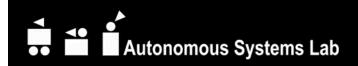
Tightly-Coupled Filter for Visual-Inertial Fusion

Photoconsistency measurements of landmark patch projections

ROVIO: Robust Visual Inertial Odometry Using a Direct EKF-Based Approach

http://github.com/ethz-asl/rovio

Michael Bloesch, Sammy Omari, Marco Hutter, Roland Siegwart



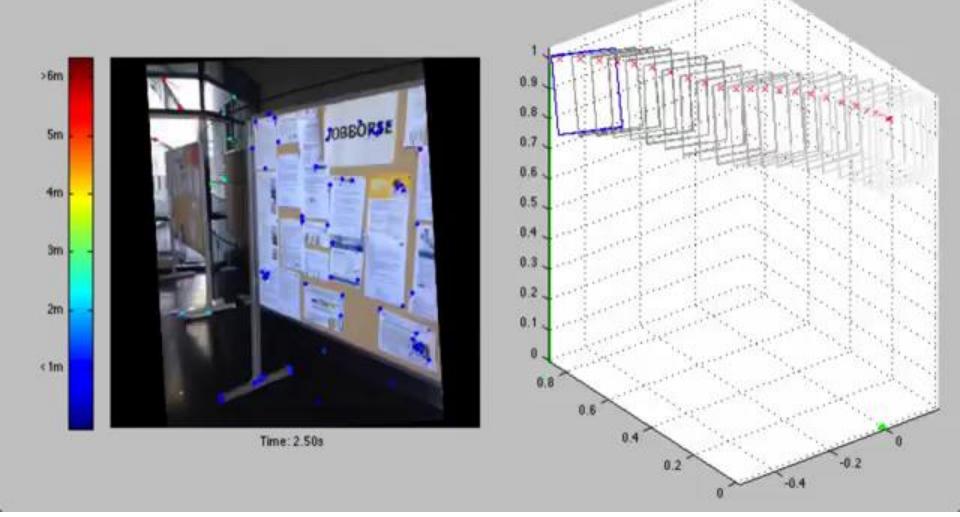
Drawbacks of Filter-based Approaches

- Linearization errors
 - Linearization with the current state estimate introduces linearization erros
 - Marginalization of old states, no reoptimization or relinearization possible
 - Leads to inconsistency of the mean/covariance estimate
- Wrong covariances/initial states
 - Modeled noise in measurement and state-transition may be inaccurate
 - Leads to over- or underconfident estimates
- Number of visual landmarks needs to be limited due to quadratic run-time in state variable dimension

Multi-State Constraint Kalman Filter

- Mourikis and Roumeliotis, A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation, ICRA 2007
- Visual-inertial filter without landmarks in the state
 - Include a window of current positions, velocities, biases and rotations into state
 - Perform local least-squares estimate to reconstruct keypoint matches observed in multiple cameras of the optimization window
 - Add measurement residuals for each camera pose and reconstructed keypoints (needs decorrelation of pose errors and feature position errors in residuals)

Multi-State Constraint Kalman Filter



M. Shelley, MSc thesis, TUM

Recap: Full State Posterior Factorization

 The full state posterior factorizes into a product of observation likelihoods, state-transition likelihoods and the initial state distribution

$$\begin{split} p\big(X_{0:t}\big|U_{1:t},Y_{0:t}\big) &= \frac{p\big(Y_t\big|X_{0:t},U_{1:t},Y_{0:t-1}\big)p\big(X_{0:t}\big|U_{1:t},Y_{0:t-1}\big)}{p\big(Y_t\big|U_{1:t},Y_{0:t}\big)} \\ &= \frac{p\big(Y_t\big|X_t\big)p\big(X_t\big|X_{0:t-1},U_{1:t},Y_{0:t-1}\big)p\big(X_{0:t-1}\big|U_{1:t},Y_{0:t-1}\big)}{p\big(Y_t\big|U_{1:t},Y_{0:t}\big)} \\ &= \eta_t p\big(Y_t\big|X_t\big)p\big(X_t\big|X_{t-1},U_t\big)p\big(X_{0:t-1}\big|U_{1:t-1},Y_{0:t-1}\big) \\ &= p\big(X_0\Big)\!\left(\prod_{\tau=0}^t \eta_\tau p\big(Y_\tau\big|X_\tau\big)\!\right)\!\left(\prod_{\tau=1}^t p\big(X_\tau\big|X_{\tau-1},U_\tau\big)\right) \end{split}$$

Recap: Full State Posterior – Non-Linear Gaussian Case

$$p(X_{0:t}|U_{1:t}, Y_{0:t}) = p(X_0) \left(\prod_{\tau=0}^t \eta_\tau p(Y_\tau|X_\tau)\right) \left(\prod_{\tau=1}^t p(X_\tau|X_{\tau-1}, U_\tau)\right)$$

- Non-linear state-transition model with Gaussian noise: $\begin{aligned} \mathbf{x}_t &= g(\mathbf{x}_{t-1}, \mathbf{u}_t) + \boldsymbol{\epsilon}_t \\ \boldsymbol{\epsilon} &\sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{d_t}) \end{aligned} \qquad p(\mathbf{x}_t \mid \mathbf{x}_{t-1}, \mathbf{u}_t) = \mathcal{N}(\mathbf{x}_t; g(\mathbf{x}_{t-1}, \mathbf{u}_t), \boldsymbol{\Sigma}_{d_t}) \end{aligned}$
- Non-linear observation model with Gaussian noise: $\mathbf{y}_t = h(\mathbf{x}_t) + \boldsymbol{\delta}_t$ $\boldsymbol{\delta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{m_t})$ $p(\mathbf{y}_t \mid \mathbf{x}_t) = \mathcal{N}(\mathbf{y}_t; h(\mathbf{x}_t), \boldsymbol{\Sigma}_{m_t})$
- Gaussian initial state estimate:

$$\mathbf{x}_0 \sim \mathcal{N}(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0) \qquad p(\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_0; \boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$$

Recap: Non-Linear Least Squares

• We can rewrite the negative log-posterior as a non-linear least squares problem:

$$\arg\min_{\mathbf{x}} E(\mathbf{x}) = \frac{1}{2}\mathbf{r}(\mathbf{x})^{\top}\mathbf{W}\mathbf{r}(\mathbf{x})$$

- Stack residuals in residual vector $\mathbf{r}(\mathbf{x})$
- Inverse covariances in block-diagonal weight matrix $\, {f W}$
- Optimization approaches:
 - Gradient descent
 - Gauss-Newton
 - Levenberg-Marquardt
 - etc.

Recap: Gauss-Newton Method

- Idea: Approximate Newton's method to minimize E(x)
 - Approximate E(x) through linearization of residuals

$$\begin{split} \widetilde{E}(\mathbf{x}) &= \frac{1}{2} \widetilde{\mathbf{r}}(\mathbf{x})^{\top} \mathbf{W} \widetilde{\mathbf{r}}(\mathbf{x}) \\ &= \frac{1}{2} \left(\mathbf{r}(\mathbf{x}_k) + \mathbf{J}_k \left(\mathbf{x} - \mathbf{x}_k \right) \right)^{\top} \mathbf{W} \left(\mathbf{r}(\mathbf{x}_k) + \mathbf{J}_k \left(\mathbf{x} - \mathbf{x}_k \right) \right) \qquad \mathbf{J}_k := \nabla_{\mathbf{x}} \mathbf{r}(\mathbf{x}) |_{\mathbf{x} = \mathbf{x}_k} \\ &= \frac{1}{2} \mathbf{r}(\mathbf{x}_k)^{\top} \mathbf{W} \mathbf{r}(\mathbf{x}_k) + \underbrace{\mathbf{r}(\mathbf{x}_k)^{\top} \mathbf{W} \mathbf{J}_k}_{=:\mathbf{b}_k^{\top}} \left(\mathbf{x} - \mathbf{x}_k \right) + \frac{1}{2} \left(\mathbf{x} - \mathbf{x}_k \right)^{\top} \underbrace{\mathbf{J}_k^{\top} \mathbf{W} \mathbf{J}_k}_{=:\mathbf{H}_k} \left(\mathbf{x} - \mathbf{x}_k \right) \end{split}$$

• Find root of $\nabla_{\mathbf{x}} \widetilde{E}(\mathbf{x}) = \mathbf{b}_k^\top + (\mathbf{x} - \mathbf{x}_k)^\top \mathbf{H}_k$ using Newton's method, i.e.

$$\nabla_{\mathbf{x}} \widetilde{E}(\mathbf{x}) = \mathbf{0} \text{ iff } \mathbf{x} = \mathbf{x}_k - \mathbf{H}_k^{-1} \mathbf{b}_k$$

- Pros:
 - Faster convergence (approx. quadratic convergence rate)
- Cons:
 - Divergence if too far from local optimum (H not positive definite)
 - Solution quality depends on initial guess

Full State Posterior Optimization

- Idea: use state-transition and measurement models to formulate non-linear least squares optimization problem to obtain a full state posterior estimate
- Requires iterative reintegration and relinearization
 - Relinearize in each iteration in current state estimate
 - Slow but more accurate than filter
 - Evaluation of the state-transition residuals requires integration of the state-variables at time t+1 from IMU measurements and state estimate at time t

$$p(t_2) = p(t_1) + v(t_1)(t_2 - t_1) + \int \int_{t_1}^{t_2} \mathbf{R}(\boldsymbol{\omega}(t)) \left(\widetilde{\mathbf{a}}(t) - \mathbf{b}_{\mathbf{a}}(t) \right) + \mathbf{g} \, dt^2$$

• Optimization problem quickly becomes large (and slow)

IMU Preintegration

- State-transitions need to be reintegrated in each time step due to its dependency of the formulation on the start state
 - Start state is expressed in the world frame
 - Start state changes due to optimization
- Integrate "relative motion" $\Delta p_{i \rightarrow j}$, $\Delta v_{i \rightarrow j}$, and $\mathbf{R}_{i \rightarrow j}$ between frames, starting at zero motion:

$$\Delta \boldsymbol{p}_{i \to k+1} = \Delta \boldsymbol{p}_{i \to k} + \Delta \boldsymbol{v}_{i \to k} \Delta t$$
$$\Delta \boldsymbol{v}_{i \to k+1} = \Delta \boldsymbol{v}_{i \to k} + \mathbf{R}_{i \to k} \left(\boldsymbol{a}_{z} - \boldsymbol{b}_{a} \right) \Delta t$$
$$\mathbf{R}_{i \to k+1} = \mathbf{R}_{i \to k} \exp\left(\left[\boldsymbol{\omega}_{z} - \boldsymbol{b}_{\omega} \right]_{\times} \Delta t \right)$$

- Compare with relative motion between estimates
- Neglecting small changes in bias, "preintegration" becomes possible

Fixed-Lag Smoothing

- Still, optimizing the full state posterior is too slow for real-time odometry
- Can we...
 - ... efficiently optimize a window of frames as in non-linear least squares?
 - ... marginalize old state variables as in filtering?
- Let's look closer at the Gauss-Newton update step...

Fixed-Lag Smoothing

• Let's look closer at the Gauss-Newton update step...

$$\nabla_{\mathbf{x}}\widetilde{E}(\mathbf{x}) = \mathbf{0} \text{ iff } \mathbf{x} = \mathbf{x}_k - \mathbf{H}_k^{-1}\mathbf{b}_k$$

- We need to invert the Hessian H to solve for the update on x
- Can we reduce the system of linear equations to update only a small set of state variables in a recent optimization window?
- Idea: Apply the Schur complement (corresponds to marginalization of the Gaussian full state estimate)

Marginalization of Old States

• Let's look closer at the Gauss-Newton update step...

$$\nabla_{\mathbf{x}} \widetilde{E}(\mathbf{x}) = \mathbf{0} \text{ iff } \mathbf{x} = \mathbf{x}_k - \mathbf{H}_k^{-1} \mathbf{b}_k$$

• We need to invert the Hessian H to solve for the update on x

$$\mathbf{H}\Delta\mathbf{x} = -\mathbf{b} \qquad \begin{pmatrix} \mathbf{H}_{11} & \mathbf{H}_{12} \\ \mathbf{H}_{21} & \mathbf{H}_{22} \end{pmatrix} \begin{pmatrix} \Delta\mathbf{x}_1 \\ \Delta\mathbf{x}_2 \end{pmatrix} = \begin{pmatrix} -\mathbf{b}_1 \\ -\mathbf{b}_2 \end{pmatrix}$$

• We can solve for Δx_1 using the Schur complement of \mathbf{H}_{22} in H:

$$\left(\mathbf{H}_{11} - \mathbf{H}_{12}\mathbf{H}_{22}^{-1}\mathbf{H}_{21}\right)\Delta\mathbf{x}_{1} = -\mathbf{b}_{1} + \mathbf{H}_{12}\mathbf{H}_{22}^{-1}\mathbf{b}_{2}$$

Pros and Cons of Fixed-Lag Smoothing

- Marginalization leads to fill-in of the Hessian (will see later why it is sparse initially)
 - Inversion (of submatrices) gets more costly
- Dropping of states (e.g. landmarks) avoids fill-in but reduces accuracy
 - Trade-off between accuracy and efficiency
- Marginalization fixes the linearization point of the marginalized state variables
 - Linearization errors cannot be corrected
 - Variables may be linearized multiple times at different values
 - Estimate becomes inconsistent/inaccurate

Indirect Fixed-Lag Smoothing Example

• OKVIS: Keyframe-based indirect fixed-lag smoothing VIO

OKVIS: Open Keyfram-based Visual-Inertial SLAM

A reference implementation of:

Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart and Paul Timothy Furgale. Keyframe-based visual-inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 2015.

Direct Fixed-Lag Smoothing Example

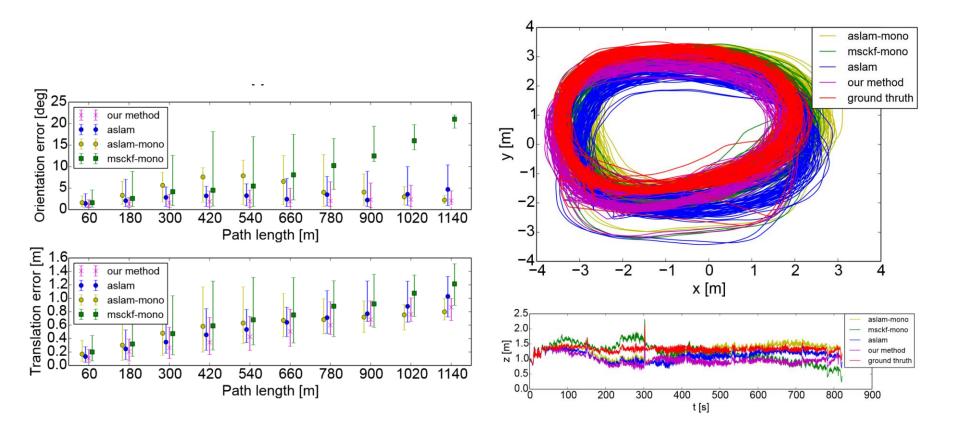
• Direct Fixed-Lag Smoothing VIO

Direct Visual-Inertial Odometry with Stereo Cameras

Vladyslav Usenko, Jakob Engel, Jörg Stückler and Daniel Cremers

Computer Vision and Pattern Recognition Group Department of Computer Science Technical University of Munich

Fixed-Lag Smoothing Example Results



Lessons Learned Today

- Vision and inertial sensors complement each others well for accurate and robust visual-inertial odometry (VIO)
- Loosely-coupled vs. tightly coupled VIO
- Filtering-based methods are fast but can only optimize the state variables of the most recent time step
- Full state posterior optimization too slow for real-time performance, but most accurate
- Fixed-lag smoothing as a trade-off:
 - optimization of a window of recent time steps
 - marginalization of old states

Further Reading

- Visual-Inertial Odometry
 - Filtering:
 - Bloesch et al., Robust Visual Inertial Odometry Using a Direct EKF-Based Approach, IROS 2015
 - Mourikis and Roumeliotis, A multi-state constraint Kalman filter for vision-aided inertial navigation, ICRA 2007
 - Fixed-lag smoothing:
 - Leutenegger et al., Keyframe-based visual-inertial odometry using nonlinear optimization, IJRR 2014
 - Usenko et al., Direct Visual-Inertial Odometry with Stereo Cameras, ICRA 2016
- IMU Preintegration
 - Forster et al., IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation, RSS 2015

Thanks for your attention!