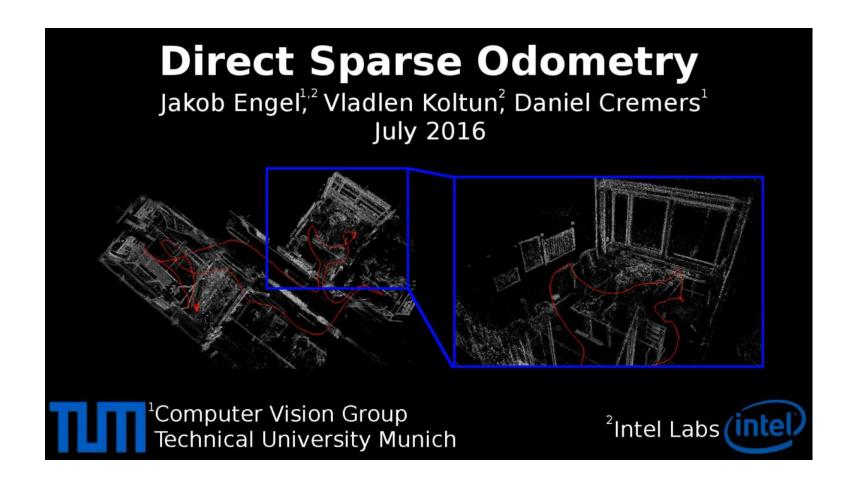


Computer Vision Group Prof. Daniel Cremers



Practical Course: Vision-based Navigation Winter term 2017/2018

Welcome

Vladyslav Usenko, Lukas von Stumberg, Prof. Dr. Jörg Stückler

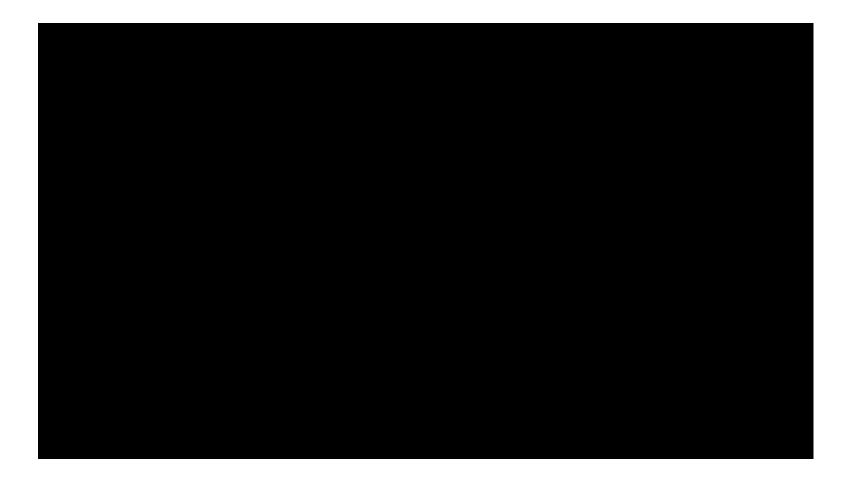
Direct Sparse Odometry with a Single Camera (2016)

Monocular SLAM with Quadrotors (2015)

Autonomous Exploration with a Low-Cost Quadrocopter using Semi-Dense Monocular SLAM

Lukas von Stumberg, Vladyslav Usenko, Jakob Engel, Jörg Stückler, Daniel Cremers

Computer Vision Group Department of Computer Science Technical University of Munich



Robotic Perception

(Usenko, von Stumberg, Pangercic, Cremers, IROS 2017)

Deep Learning for Visual Navigation (2016)

Giusti et al., A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots, RA-L 2016

Vision-Based Navigation

Current Trends in Robotics

- Robot technology becomes increasingly mature for applications
- Novel application domains
 - Shop floor logistics
 - Human-robot collaboration in industrial settings
 - Domestic service robots
 - Autonomous cars
 - Aerial inspection/maintenance
- Many of these robots need to navigate through their environment
- Vision sensors provide rich information
 - How to make use of it for navigation?

Content of this Course

- You can gain practical experience with
 - Visual odometry and localization/state estimation
 - Vision-based Simultaneous Localization and Mapping (SLAM)
 - Vision-based control of multicopters
 - Deep learning for visual navigation (if you have DL background)
- Implementation of algorithms
- Benefits/drawbacks of specific methods when applied to concrete, relevant problems
- Learn how to work in teams/on projects
- Improve your presentation skills

Available Robots in this Course

Parrot AR Drone 2 (1x)

Intel Aero (1x)

Parrot Bebop (1x)

Course Organisation

- Course takes place during the lecture period
- We register accepted students
- Initial phase (first 4 weeks): Lectures & Exercises
 - Lectures: Wednesdays 2pm to 4pm in seminar room 02.09.023
 - Tutored exercises: Wednesdays 4pm to 6pm in lab 02.05.014
 - Programming assignments will be handed out every week and checked/graded by the tutors
 - Small groups, each participant should be able to explain solution
 - Attendance to lecture & exercise sessions mandatory
- Second phase (remainder): Project
 - Work in small groups (2-3 people) on a project
 - Lab 02.05.014 available; tutors available Wednesdays 2pm-6pm
 - Implement a specific algorithm, which one tbd.
 - Present project outcome in talk&demo session (20min per group)
 - Written report on project outcome (10-12 pages, single column, singlespaced lines, 11 pt)

Course Requirements

- Good knowledge of the C/C++ language and basic mathematics such as linear algebra, analysis, stochastics, and numerics is required
- Prior practical knowledge in robotics and computer vision topics is a plus
- Participation in at least one of the following lectures of the TUM Computer Vision Group: Variational Methods for Computer Vision, Multiple View Geometry, Autonomous Navigation for Flying Robots. Similar lectures can also be accepted

Warning

- Micro Aerial Vehicles (MAVs) are dangerous objects
- Read the instructions carefully before you start
- Always use the protective hull
- If somebody gets injured, report to us so that we can improve safety guidelines
- If something gets damaged, report it to us so that we can fix it
- Don't fly MAVs outdoors or above persons
- NEVER TOUCH THE PROPELLORS
- DO NOT TRY TO CATCH THE MULTICOPTER WHEN IT FAILS LET IT FALL/CRASH!

Questions ?