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What we will cover today

" Introduction to visual motion estimation approaches
= Visual odometry (VO) vs. visual SLAM
= Qverview on VO approaches for monocular, stereo, RGB-D cameras
= The notions of sparse, dense, and direct

= Sparse, keypoint-based visual odometry

= Direct, dense motion estimation
= Motion representation using the SE(3) Lie algebra
= Non-linear least squares optimization
= Direct dense RGB-D odometry
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Part 1:
Introduction to Visual Odometry
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The Term “Visual Odometry”

= Odometry:

= Greek: ,hodos” — path, ,metron” —
measurement

= Motion or position estimation from
measurements or controls

= Typical example: wheel encoders

= Visual Odometry (VO):

= 1980-2004: Dominant research by NASA JPL
for Mars exploration rovers (Spirit and
Opportunity in 2004)

= David Nister’s ,Visual Odometry“ paper from
2004 about keypoint-based methods for
monocular and stereo cameras
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Visual Odometry

= VO is often used to complement other motion sensors
= GPS
= |nertial Measurement Units (IMUs)
= Wheel odometry
= etc.

"= |mportant in GPS-denied environments (indoors, underwater, etc.)

= Relation to Visual Simultaneous Localization and Mapping (SLAM):
= Local (VO&VSLAM) vs. global (VSLAM) consistency
= VO: 3D reconstruction only at local scale (if at all)
= VO: Real-time requirements
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Sensors for Visual Odometry

= Monocular:

Pros: Low-power, light-weight, low-cost, simple to
calibrate and use

Cons: requires motion parallax and textured scenes,
scale not observable

= Stereo:

Pros: depth without motion, less power than active
structured light

Cons: requires textured scenes, accuracy depends on
baseline, requires extrinsic calibration of the cameras,
synchronization of the cameras

= Active RGB-D sensors:

Pros: also work in untextured scenes, similar to stereo
processing
Cons: active sensing consumes power, blackbox depth
estimation
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Indirect, Direct, Sparse, Dense

Indirect Direct
Input Input
Images Images |
Extract & Match |
Features
(SIFT/SURF/ ...)
X <2
abstract image to feature observations keep full images (no abstraction)
Track: 3 Track:
min. reprojection error| . s min. photometric error
(point distances) Ty Y (intensity differences) »
7A ) e ! s’\\,l ¥
\ \ v ‘,-' = I.\ ( 9, /
Y Map: ©  ——=on || Y Map:
est. feature-parameters ‘w,‘ 5 est. per-pixel depth
(3D points / normals) *I-}:v— | | (semi-dense depth map)| |’

= Sparse: use a small set of selected pixels (keypoints)
= Dense: use all (valid) pixels
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Part 2:
Sparse Visual Odometry
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Sparse Keypoint-based Visual Odometry

Extract and match

= L “z .
A _
‘ ‘ keypoints

Determine relative
camera pose (R, t)
from keypoint matches
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Keypoint Extraction

= Detection repeatability

=  We want to find the (accurate)
image of the same 3D point from
different view-points

= Descriptor distinctiveness

= We want a descriptor that
achieves (in the ideal case) a
unique and correct association
of corresponding keypoints
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Keypoint Detectors and Descriptors

= Keypoint detection and description in images has been extensively studied

= Nowadays there is plenty of fast and repeatable detectors available, e.g.,
= Harris corner variants
= FAST corner variants (e.g. ORB detector)
= DoG blob variants (SIFT, SURF)
= Learning-based keypoints

= Many detectors come with a suitable descriptor, e.g.,
= ORB (binary pixel comparisons locally around keypoint)
= SIFT/SURF (grayscale gradient patterns locally around keypoint)
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Monocular Keypoint-based Motion Estimation

= Monocular case: no depth available at keypoints

= |f we knew the relative pose of the cameras and the 3D
position of each keypoint match, we could directly
compute to which pixels the keypoints should project
in each camera image

= To find the unknown pose and 3D positions: minimize
the reprojection error of all keypoints (optimization
problem)

1 2 2
ER,t,xq,...,x5) = Nz“Zl’i - n(xi)”Z + ”Zz,i —m(Rx; + t)llz
i

= Reprojection error: difference between measured and

Unigueness?
expected pixel position of a keypoint a

Optimality?
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Motion from Epipolar Geometry

= Alternative: examine epipolar
geometry more closely

A

= The rays from each camera to the keypoint and the baseline t are coplanar!

C1

X1 (t X RX,) =0 o xI[t]xRX, =0

= The essential matrix E = [t]<R captures the relative camera pose
= Each keypoint match provides an ,,epipolar constraint”
= 8 matches suffice to determine  E (8-point algorithm)

= |n the uncalibrated case, the camera calibration needs to be subsumed into the so-
called fundamental matrix F = K TEK™1
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8-Point Algorithm (Longuet-Higgins, 1981)

= Find approximation to essential matrix:
= Construct matrix A = (ay,ay, ..., ay)” with a; = %;; X X, ;.

= Apply a singular value decomposition (SVD) on A = USVT and unstack the 9th column
vector of V into E

= Project the approximate E into the (normalized) essential space:

Determine the SVD of £ = U diag(ay, 05, 03) VTand replace the singular values o4, 05, 03
with 1,1,0 to find E = U diag(1,1,0) V7

= Determine one of the following 4 possible solutions that intersect the points in front of

both cameras:
T 0 +1 0
with RZ (i E) = <$1 0 0)

0 0 1

T
R= UR§<i§> VT

[t]x = UR, (i g) diag(1,1,0)UT
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3D Keypoint-based Motion Estimation

= Stereo case: rotation and translation known between the left and right image
=  Match keypoints between left and right image, triangulate their 3D positions

= To estimate motion between two stereo image pairs we could:
= use 8-point algorithm on keypoints in the left images
= recover scale from triangulated stereo depth

= Alternatively, since 3D positions of the keypoints known: simpler least-squares
optimization of the reprojection error:

1
E(Rt) = Nz”Zl’i —m(RTx; — RTt)”i + |22 — T(Rx; + t)||§
i
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Triangulation

= Given: n cameras {M; = K;(R; t;)}
Point correspondence X0, X1
= Wanted: Corresponding 3D point P

q1
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Triangulation

= Where do we expecttosee p= (XY Z W)T?

mllX + mng -+ m13Z -+ mMVV . TT?QlX + mggy + ?TEQSZ + TTEQ,;IH”T
Mg X + MgoY + Mg + Mg W Moy X + MgsY + MgsZ + Mg, W

'y

5 =
= Minimize the residuals

" = arg min d(x:,%;)?
p & ) ; (x5,%;)
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Triangulation

= Multiply with denominator gives

0= (x;ms1 —mi11)X + (x;msa — m12)Y + (xjmsz — mi3)Z + (zjmss — miag)W

0= (yjma1 — ma1)X + (yjms2 — ma2)Y + (y;mss — ma3)Z + (y;msq — mag)W

Solvefor p= (XY Z W)' using:
" Linear least squares with W=1
" Linear least squares using SVD

Non-linear least squares of the residuals (most accurate)
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Robust Keypoint Matching

= Keypoint detectors and descriptors not perfect

= Pose estimation very sensitive to wrong correspondences (especially when using
the 8-point algorithm)

= |dea: try out different combinations of 8 matches until we find a good fit for most
of the overall keypoints

= Random Sample Consensus (RANSAC) algorithm
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Robust Estimation

Example: Fit a line to 2D data containing outliers

A

" |nput datais a mixture of
= |nliers (perturbed by Gaussian noise)
= Qutliers (unknown distribution)

= Let’s fit a line using least squares...
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Robust Estimation

Example: Fit a line to 2D data containing outliers

A

" |nput datais a mixture of
= |nliers (perturbed by Gaussian noise)
= Qutliers (unknown distribution)

= Least squares fit gives poor results!
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RANdom SAmple Consensus (RANSAC)
[Fischler and Bolles, 1981]

Goal: Robustly fit a model to a data set S which contains outliers
Algorithm:

1. Randomly select a (minimal) subset

2. Instantiate the model from it

3. Using this model, classify all data points as
inliers or outliers

Repeat 1-3 for /Viterations

5. Select the largest inlier set, and re-estimate the model from all
points in this set

25 Computer Vision Group, TUM



Example

= Step 1: Sample a random subset
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Example

= Step 2: Fit a model to this subset
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Example

= Step 3: Classify points as inliers and outliers (e.g., using a threshold
distance)

- 10 inliers, 2 outliers
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Example

= Step 4: Repeat steps 1-3 for N iterations

° Iteration 2:
= Sinliers, 7 outliers
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Example

= Step 4: Repeat steps 1-3 for N iterations

Py Iteration 3:
= 2 inliers, 10 outliers
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Example

= Step 5: Select the best model (most inliers), then re-fit model using

all inliers
A
o

Best model:
Ilteration 1

(10 inliers, 2 outliers)

_ o
>
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How Many Iterations Do We Need?

= For a probability of success p, we need

_ log(1—p)
log(1 — (1 — o))
for subset size s and outlier ratio €

= E.g., for p=0.99:

iterations

N

Required points Outlier ratio €

S 10% 20% 30% 40% 50% 60% 70%
Line 2 3 5 7 11 17 27 49
Plane 3 4 7 11 19 35 70 169
Essential matrix 8 9 26 78 272 1177 7025 70188
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Summary on RANSAC

= Efficient algorithm to estimate a model from noisy and outlier-
contaminated data

= RANSAC is used today very widely
= Often used in feature matching / visual motion estimation
= Many improvements/variants (e.g., PROSAC, MLESAC, ...)
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Part 2: Lessons Learned

= How to estimate motion from keypoints from monocular images
using the 8-point algorithm

= How to use the 8-point algorithm for stereo and RGB-D
= How to triangulate keypoint matches given the camera pose
= How to separate inliers from outliers using RANSAC
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Part 3:
Direct Dense Visual Odometry

Computer Vision Group, TUM
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Problem with Keypoint-based Methods
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Special Euclidean Group SE(3)

= Not all matrices are transformation matrices: Transformation
matrices have a special structure

T(E{ 'i)eSE(:%)cR‘lX‘l

= Translation t has 3 degrees of freedom
= Rotation R has 3 degrees of freedom

= They form a group which we call SE(3). The group operator is matrix
multiplication:

. SE(3) x SE(3) — SE(3)
A B A
= The operator is associative, but not commutative!
= There is also an inverse and a neutral element
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Parametrizations of SE(3)

= Translation t has 3 degrees of freedom
= Rotation R has 3 degrees of freedom

T:(IO{ '{)eSE(s)cR‘lX‘l

= Different parametrizations 6 of T(6)
= Direct matrix representation
= Quaternion / translation

= Axis,angle / translation
= Later: Twist coordinates in Lie Algebra se(3) of SE(3)
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Pose Parametrization for Optimization

= Let’s say we want to optimize a cost function £/(@) for the pose in
some 6 parametrization

= Weneedtoset VoE(0) =0

which we can tackle using gradient descent (or higher-order
methods) by making steps on @

0 < 0 — AVoE(0)

= When we determine the derivative of £/(0), we will require the
derivative of T'(0) for @, which should have no singularities

= We also update the pose parametrization, which requires a minimal
representation
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SE(3) Lie Algebra for Representing Motion

w
o Lie algebra § = ( ) c R®

P A%
exp/ € € se(3)
w e R’ W = |w]
Lie group

/ log V © R?
T € SE(3)

. W v 44
5._(0 0>ER

= SE(3) is also a smooth manifold which makes it a Lie group

I € SE(3)

= The SE(3) Lie algebra se(3) provides an elegant way to parametrize poses for
optimization

= |ts elements E € se(3) form the tangent space of SE(3) at its
identity I € SE(3)

= The se(3) elements can be interpreted as rotational and translational
velocities applied for some duration (twist) that explain the infinitesimal
motion away from the identity transformation
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Exponential Map of SE(3)

Lie algebra

£ € se(3)

/ log

exp /

Lie group

T € SE(3)

I € SE(3)

= The exponential map finds the transformation matrix for a twist:
N [ exp(w) Av
P (‘5) N ( 0o 1 )

sinjw| . 1 —cos|w|
W

w] o]’

exp (w) =1+
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Logarithm Map of SE(3)

Lie algebra

£ € se(3)

/ log

exp /

Lie group

T € SE(3)

I € SE(3)

= The logarithm maps twists to transformation matrices:

log (T) — ( logéR) A;t )

o (ua®) -1 _|wl T
lw| = cos ( ; log (R) = Yin | (R-R")
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Optimization with Twist Coordinates

= How are twists useful in optimization?

= They provide a minimal representation without singularities close to
identity

= Since SE(3) is a smooth manifold, we can decompose T({)
in each optimization step into the transformation itself
and a small increment (could be left or right-multiplied) 4 £ :

T(§) := T(§)T(o§)

= Gradient descent operates on the auxiliary variable
0 < 0 — Ve E(6)
E +— log (exp (E) exp (32))
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SE(3) Lie Algebra for Representing Motion

= C++ implementation: Sophus extension library for Eigen,
by Hauke Strasdat, https://github.com/strasdat/Sophus

= Further reading on motion representation using the SE(3) Lie algebra:

= Yi Ma, Stefano Soatto, Jana Kosecka, Shankar S. Sastry. An Invitation to
3-D Vision, Chapter 2: http://vision.ucla.edu/MASKS/

= http://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D techre
p.pdf

= http://ethaneade.com/lie.pdf
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Dense Direct Image Alignment

= |f we know pixel depth, we can ,,simulate” an RGB-D image from a different view
point
= |deally, the warped image is the same like the image taken from that pose:

I(x) = L(n(T(§)Z(x) K~ 'X))
= For RGB-D, we have the depth, but want to find the camera motion!
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Dense Direct Image Alignment

= Given a camera motion, we can find and compare corresponding pixels
through projection.

=  We measure in one image a noisy version of the intensity in the other

" L) = L(n(T(€)Z()K %)) + e

= Asimple assumption is Gaussian noise, e.g. if the noise only comes from
pixel noise on the chip 9
€ v J\/‘(Oj OI)

= |f we further assume that the measurements are stochastically independent
at each pixel, we can formulate the joint probability

p(& |1, 1o) x p(Iy | € 12)p(€)
p€ | I, L) o< [ [V (11(x) — L(n(T(€) Z(x)K'X));0,07)

x€e
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Dense Direct Image Alignment

= Maximum-likelihood estimation problem
=  Optimize negative log-likelihood
® Product becomes a summation

= Exponentials disappear
= Normalizers are independent of the pose

= This non-linear least squares error function can be efficiently optimized
using standard methods (Gauss-Newton, Levenberg-Marquardt)

Vision-based Navigation 47 Computer Vision Group, TUM



Least Squares Optimization

= If the residuals would be linearin § ,ie.,r(&) = AE+Db
optimization would be simple, has a closed-form solution

= |n this case, the error function and its derivatives are

B(€) = 5r(€)"Wr(€)
V(€)= Ver(6) Wr(€) = ATWr(¢
V:E(€) = ATWA

= Linearizing” and setting the first derivative to zero yields

VeB(§) = VeE(&o) + VeE (&) (£ — &) =0
€ =& — Veb(&)  VeE(&)
£ =& — (ATWA)  ATWr(€,)
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Non-linear Least Squares Optimization

= |n direct image alignment, the residuals are non-linearin &

=  Gauss-Newton method, iterate:

* Linearize residuals 7€) = fr(ﬁo) + Ver(§)(€ — &)
E(€) = ( §)' Wi (€)
VEE(S) = Vg"“( &) Wr(¢)
ViE(£) = Ver(§)"WVer(€)

= Solve linearized system
VeE(§) = VeE (&) + VEE(&) (€ — &) =
£ &— ViE(§) ' VeE(§)
€&~ (Ver(&)"WVer(§)) ™ Ver(6)"Wr(€)
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Actual Residual Distribution

- Normal distribution
- Laplace distribution
- Student-t distribution

=  The Gaussian noise assumption is not valid
= Many outliers (occlusions, motion, etc.)
= Residuals are distributed with more mass on the larger values
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Iteratively Reweighted Least Squares

10

- Normal distribution
- Laplace distribution
- Student-t distribution

w(r)r?

= Can we change the residual distribution in the least squares optimization?
= We can reweight the residuals in each iteration to adapt residual distribution

2 . . . .
T’(X, ) E.g., for Laplace distribution:

B&) =5 wirk€) =3 wir(x,€)) = Ir(x,€)|”
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Huber-Loss

= Huber-loss ,switches” between normal (locally at mean) and Laplace
distribution

2 .
3 Il if frfl, <0

r =
H H5 5(“74“1 — %5) otherwise

------------ Huber-loss for ¢ =1
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Linearization of Image Alignment Residuals

= |n our direct image alignment case, the linearized residuals are

Ver(x,8) = =V la(n(p(x,£))) - Ven(p(x,§))

with p(x,€) =T Z(x)K'x
r(x,§) = L(x) — L(m(p(x,£)))

" Linearization is only valid for motions that change the projection in a
small image neighborhood (where the gradient hints into the
direction)
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Coarse-To-Fine

= Adapt size of the neighborhood from coarse to fine

Coarse motion

Fine motion
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Covariance of the Pose Estimate

= Non-linear least squares determines
a Gaussian estimate

p(£ | 117[2) :N(g’iﬁ) Eﬁ

Y = (Ver(§)' WVer())

= Due to pose decomposition, we have to change the coordinate frame of the
covariance using the adjoint in SE(3)

p(£ ‘ Il, IQ) = N (E, adT(g)Eé‘gadg(g))
Sse = (Voer (86 = 0,6 WVser (56 = 0,8))

adp = ( IO{ [t]f{R ) c RO*®
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Levenberg-Marquardt

Idea: damp Gauss-Newton algorithm
£ &~ (Ver(§)"WVer(€) + 0 1) Ver(§)" Wr(g)

More adaptive component-wise damping:

£ &— (Ver(§)" WVer(¢)
+ 1. diag(Ver(€)TWVer(€))) Ver(€) Wr(g)

Hybrid between Newton method (A = 0) and gradient descent with
step size 1/A (for A = oo)

Start with e.g. A = 0.1 and update A in each iteration
decrease A in case of successful update (decreased error)
increase A in case of unsuccessful update (increased error)
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Part 3: Lessons Learned

= The SE(3) Lie algebra is an elegant way of motion representation, especially
for gradient-based optimization of motion parameters

= Non-linear least squares optimization is a versatile tool that can be applied
for direct image alignment

= |teratively Reweighted Least Squares allows for overcoming the limitation of
basic least squares on the Gaussian residual distribution/L2 loss on the
residuals

= Dense RGB-D odometry through direct image alignment can be
implemented in a non-linear least squares framework.

= The linear approximation of the residuals requires a coarse-to-fine optimization
scheme

= Non-linear least squares also provides the pose covariance
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Questions ?
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