
Computer Vision Group
Prof. Daniel Cremers

Practical Course:
Vision-based Navigation
Winter Term 2017/2018

Vladyslav Usenko, Lukas von Stumberg, Prof. Dr. Jörg Stückler

Lecture 2:
Visual Motion Estimation

What we will cover today

▪ Introduction to visual motion estimation approaches

▪ Visual odometry (VO) vs. visual SLAM

▪ Overview on VO approaches for monocular, stereo, RGB-D cameras

▪ The notions of sparse, dense, and direct

▪ Sparse, keypoint-based visual odometry

▪ Direct, dense motion estimation

▪ Motion representation using the SE(3) Lie algebra

▪ Non-linear least squares optimization

▪ Direct dense RGB-D odometry

Computer Vision Group, TUM2Vision-based Navigation

Part 1:
Introduction to Visual Odometry

Computer Vision Group, TUM 3

Visual Motion Estimation a.k.a.
Visual Odometry

Computer Vision Group, TUM4Vision-based Navigation

Visual Motion Estimation a.k.a.
Visual Odometry

Computer Vision Group, TUM5Vision-based Navigation

Visual Motion Estimation a.k.a.
Visual Odometry

Computer Vision Group, TUM6Vision-based Navigation

The Term “Visual Odometry”

▪ Odometry:

▪ Greek: „hodos“ – path, „metron“ –
measurement

▪ Motion or position estimation from
measurements or controls

▪ Typical example: wheel encoders

▪ Visual Odometry (VO):

▪ 1980-2004: Dominant research by NASA JPL
for Mars exploration rovers (Spirit and
Opportunity in 2004)

▪ David Nister‘s „Visual Odometry“ paper from
2004 about keypoint-based methods for
monocular and stereo cameras

Computer Vision Group, TUM7Vision-based Navigation

Visual Odometry

▪ VO is often used to complement other motion sensors

▪ GPS

▪ Inertial Measurement Units (IMUs)

▪ Wheel odometry

▪ etc.

▪ Important in GPS-denied environments (indoors, underwater, etc.)

▪ Relation to Visual Simultaneous Localization and Mapping (SLAM):

▪ Local (VO&VSLAM) vs. global (VSLAM) consistency

▪ VO: 3D reconstruction only at local scale (if at all)

▪ VO: Real-time requirements

Computer Vision Group, TUM8Vision-based Navigation

Sensors for Visual Odometry

▪ Monocular:
▪ Pros: Low-power, light-weight, low-cost, simple to

calibrate and use

▪ Cons: requires motion parallax and textured scenes,
scale not observable

▪ Stereo:
▪ Pros: depth without motion, less power than active

structured light

▪ Cons: requires textured scenes, accuracy depends on
baseline, requires extrinsic calibration of the cameras,
synchronization of the cameras

▪ Active RGB-D sensors:
▪ Pros: also work in untextured scenes, similar to stereo

processing

▪ Cons: active sensing consumes power, blackbox depth
estimation

Computer Vision Group, TUM9Vision-based Navigation

Indirect, Direct, Sparse, Dense

Computer Vision Group, TUM10Vision-based Navigation

▪ Sparse: use a small set of selected pixels (keypoints)

▪ Dense: use all (valid) pixels

Indirect Direct

Part 2:
Sparse Visual Odometry

Computer Vision Group, TUM 11

Sparse Keypoint-based Visual Odometry

Computer Vision Group, TUM12Vision-based Navigation

R, t ?

Extract and match
keypoints

Determine relative
camera pose (R, t)
from keypoint matches

Keypoint Extraction

Computer Vision Group, TUM13Vision-based Navigation

▪ Detection repeatability

▪ We want to find the (accurate)
image of the same 3D point from
different view-points

▪ Descriptor distinctiveness

▪ We want a descriptor that
achieves (in the ideal case) a
unique and correct association
of corresponding keypoints

Keypoint Detectors and Descriptors

Computer Vision Group, TUM14Vision-based Navigation

▪ Keypoint detection and description in images has been extensively studied

▪ Nowadays there is plenty of fast and repeatable detectors available, e.g.,

▪ Harris corner variants

▪ FAST corner variants (e.g. ORB detector)

▪ DoG blob variants (SIFT, SURF)

▪ Learning-based keypoints

▪ Many detectors come with a suitable descriptor, e.g.,

▪ ORB (binary pixel comparisons locally around keypoint)

▪ SIFT/SURF (grayscale gradient patterns locally around keypoint)

Monocular Keypoint-based Motion Estimation

Computer Vision Group, TUM15Vision-based Navigation

▪ Monocular case: no depth available at keypoints

▪ If we knew the relative pose of the cameras and the 3D
position of each keypoint match, we could directly
compute to which pixels the keypoints should project
in each camera image

▪ To find the unknown pose and 3D positions: minimize
the reprojection error of all keypoints (optimization
problem)

▪ Reprojection error: difference between measured and
expected pixel position of a keypoint

R, t ?

Uniqueness?
Optimality?

𝐸 𝑅, 𝑡, 𝑥1, … , 𝑥𝑁 =
1

𝑁

𝑖

𝑧1,𝑖 − 𝜋(𝑥𝑖) 2

2
+ 𝑧2,𝑖 − 𝜋(𝑅𝑥𝑖 + 𝑡)

2

2

𝑐1 𝑐2

Motion from Epipolar Geometry

Computer Vision Group, TUM16Vision-based Navigation

▪ Alternative: examine epipolar
geometry more closely

▪ The rays from each camera to the keypoint and the baseline t are coplanar!

▪ The essential matrix captures the relative camera pose

▪ Each keypoint match provides an „epipolar constraint“

▪ 8 matches suffice to determine (8-point algorithm)

▪ In the uncalibrated case, the camera calibration needs to be subsumed into the so-
called fundamental matrix

ҧ𝑥1
𝑇 𝑡 × 𝑅 ҧ𝑥2 = 0 ↔ ҧ𝑥1

𝑇[𝑡]×𝑅 ҧ𝑥2 = 0

𝐸 = [𝑡]×𝑅

𝑡
ҧ𝑥1

𝑅 ҧ𝑥2

𝑐1
𝑐2

𝐸

𝐹 = 𝐾−𝑇𝐸𝐾−1

8-Point Algorithm (Longuet-Higgins, 1981)

Computer Vision Group, TUM17Vision-based Navigation

▪ Find approximation to essential matrix:

▪ Construct matrix 𝐴 = (𝑎1, 𝑎2, … , 𝑎𝑁)
𝑇 with 𝑎𝑖 = ҧ𝑥1,𝑖 × ҧ𝑥2,𝑖.

▪ Apply a singular value decomposition (SVD) on A = US𝑉𝑇 and unstack the 9th column
vector of 𝑉 into ෨𝐸

▪ Project the approximate ෨𝐸 into the (normalized) essential space:
Determine the SVD of ෨𝐸 = 𝑈 diag(𝜎1, 𝜎2, 𝜎3) 𝑉

𝑇and replace the singular values 𝜎1, 𝜎2, 𝜎3
with 1,1,0 to find 𝐸 = 𝑈 diag(1,1,0) 𝑉𝑇

▪ Determine one of the following 4 possible solutions that intersect the points in front of
both cameras:

𝑅 = 𝑈 𝑅𝑍
𝑇 ±

𝜋

2
𝑉𝑇

[𝑡]× = 𝑈 𝑅𝑍 ±
𝜋

2
diag 1,1,0 𝑈𝑇

with 𝑅𝑍
𝑇 ±

𝜋

2
=

0 ±1 0
∓1 0 0
0 0 1

3D Keypoint-based Motion Estimation

Computer Vision Group, TUM18Vision-based Navigation

▪ Stereo case: rotation and translation known between the left and right image

▪ Match keypoints between left and right image, triangulate their 3D positions

▪ To estimate motion between two stereo image pairs we could:

▪ use 8-point algorithm on keypoints in the left images

▪ recover scale from triangulated stereo depth

▪ Alternatively, since 3D positions of the keypoints known: simpler least-squares
optimization of the reprojection error:

𝐸 𝑅, 𝑡 =
1

𝑁

𝑖

𝑧1,𝑖 − 𝜋(𝑅𝑇𝑥𝑖 − 𝑅𝑇𝑡)
2

2
+ 𝑧2,𝑖 − 𝜋(𝑅𝑥𝑖 + 𝑡)

2

2

Triangulation

▪ Given: n cameras

Point correspondence

▪ Wanted: Corresponding 3D point

Computer Vision Group, TUM19

Triangulation

▪ Where do we expect to see ?

▪ Minimize the residuals

Computer Vision Group, TUM20

Triangulation

▪ Multiply with denominator gives

Solve for using:

▪ Linear least squares with W=1

▪ Linear least squares using SVD

▪ Non-linear least squares of the residuals (most accurate)

Computer Vision Group, TUM21

Robust Keypoint Matching

Computer Vision Group, TUM22Vision-based Navigation

▪ Keypoint detectors and descriptors not perfect

▪ Pose estimation very sensitive to wrong correspondences (especially when using
the 8-point algorithm)

▪ Idea: try out different combinations of 8 matches until we find a good fit for most
of the overall keypoints

▪ Random Sample Consensus (RANSAC) algorithm

Example: Fit a line to 2D data containing outliers

▪ Input data is a mixture of

▪ Inliers (perturbed by Gaussian noise)

▪ Outliers (unknown distribution)

▪ Let’s fit a line using least squares…

Robust Estimation

Computer Vision Group, TUM23

Example: Fit a line to 2D data containing outliers

▪ Input data is a mixture of

▪ Inliers (perturbed by Gaussian noise)

▪ Outliers (unknown distribution)

▪ Least squares fit gives poor results!

Robust Estimation

Computer Vision Group, TUM24

RANdom SAmple Consensus (RANSAC)
[Fischler and Bolles, 1981]

Goal: Robustly fit a model to a data set which contains outliers

Algorithm:

1. Randomly select a (minimal) subset

2. Instantiate the model from it

3. Using this model, classify all data points as
inliers or outliers

4. Repeat 1-3 for iterations

5. Select the largest inlier set, and re-estimate the model from all
points in this set

Computer Vision Group, TUM25

Example

▪ Step 1: Sample a random subset

Computer Vision Group, TUM26

Example

▪ Step 2: Fit a model to this subset

Computer Vision Group, TUM27

Example

▪ Step 3: Classify points as inliers and outliers (e.g., using a threshold
distance)

Computer Vision Group, TUM28

 10 inliers, 2 outliers

Example

▪ Step 4: Repeat steps 1-3 for N iterations

Computer Vision Group, TUM29

Iteration 2:
 5 inliers, 7 outliers

Example

▪ Step 4: Repeat steps 1-3 for N iterations

Computer Vision Group, TUM30

Iteration 3:
 2 inliers, 10 outliers

Example

▪ Step 5: Select the best model (most inliers), then re-fit model using
all inliers

Computer Vision Group, TUM31

Best model:
Iteration 1
(10 inliers, 2 outliers)

How Many Iterations Do We Need?

▪ For a probability of success , we need

for subset size and outlier ratio

▪ E.g., for p=0.99:

Computer Vision Group, TUM32

iterations

Required points
s

Outlier ratio ε

10 % 20 % 30 % 40 % 50 % 60 % 70 %

Line 2 3 5 7 11 17 27 49

Plane 3 4 7 11 19 35 70 169

Essential matrix 8 9 26 78 272 1177 7025 70188

Summary on RANSAC

▪ Efficient algorithm to estimate a model from noisy and outlier-
contaminated data

▪ RANSAC is used today very widely

▪ Often used in feature matching / visual motion estimation

▪ Many improvements/variants (e.g., PROSAC, MLESAC, …)

33 Computer Vision Group, TUM

Part 2: Lessons Learned

▪ How to estimate motion from keypoints from monocular images
using the 8-point algorithm

▪ How to use the 8-point algorithm for stereo and RGB-D

▪ How to triangulate keypoint matches given the camera pose

▪ How to separate inliers from outliers using RANSAC

Computer Vision Group, TUM34

Part 3:
Direct Dense Visual Odometry

Computer Vision Group, TUM 35

Problem with Keypoint-based Methods

Computer Vision Group, TUM36Vision-based Navigation

▪ Not all matrices are transformation matrices: Transformation
matrices have a special structure

▪ Translation has 3 degrees of freedom

▪ Rotation has 3 degrees of freedom

▪ They form a group which we call SE(3). The group operator is matrix
multiplication:

▪ The operator is associative, but not commutative!

▪ There is also an inverse and a neutral element

37

Special Euclidean Group SE(3)

Computer Vision Group, TUM

▪ Translation has 3 degrees of freedom

▪ Rotation has 3 degrees of freedom

▪ Different parametrizations of

▪ Direct matrix representation

▪ Quaternion / translation

▪ Axis,angle / translation

▪ Later: Twist coordinates in Lie Algebra se(3) of SE(3)

38

Parametrizations of SE(3)

Computer Vision Group, TUM

Pose Parametrization for Optimization

▪ Let’s say we want to optimize a cost function for the pose in
some parametrization

▪ We need to set

which we can tackle using gradient descent (or higher-order
methods) by making steps on

▪ When we determine the derivative of , we will require the
derivative of for , which should have no singularities

▪ We also update the pose parametrization, which requires a minimal
representation

Computer Vision Group, TUM39Vision-based Navigation

SE(3) Lie Algebra for Representing Motion

▪ SE(3) is also a smooth manifold which makes it a Lie group

▪ The SE(3) Lie algebra se(3) provides an elegant way to parametrize poses for
optimization

▪ Its elements form the tangent space of SE(3) at its
identity

▪ The se(3) elements can be interpreted as rotational and translational
velocities applied for some duration (twist) that explain the infinitesimal
motion away from the identity transformation

Computer Vision Group, TUM40Vision-based Navigation

Lie algebra

Lie group log

exp

Exponential Map of SE(3)

▪ The exponential map finds the transformation matrix for a twist:

Computer Vision Group, TUM41Vision-based Navigation

Lie group

Lie algebra

log

exp

Logarithm Map of SE(3)

▪ The logarithm maps twists to transformation matrices:

Computer Vision Group, TUM42Vision-based Navigation

Lie group

Lie algebra

log

exp

Optimization with Twist Coordinates

▪ How are twists useful in optimization?

▪ They provide a minimal representation without singularities close to
identity

▪ Since SE(3) is a smooth manifold, we can decompose
in each optimization step into the transformation itself
and a small increment (could be left or right-multiplied) :

▪ Gradient descent operates on the auxiliary variable

Computer Vision Group, TUM43Vision-based Navigation

SE(3) Lie Algebra for Representing Motion

▪ C++ implementation: Sophus extension library for Eigen,
by Hauke Strasdat, https://github.com/strasdat/Sophus

▪ Further reading on motion representation using the SE(3) Lie algebra:

▪ Yi Ma, Stefano Soatto, Jana Kosecka, Shankar S. Sastry. An Invitation to
3-D Vision, Chapter 2: http://vision.ucla.edu/MASKS/

▪ http://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techre
p.pdf

▪ http://ethaneade.com/lie.pdf

Computer Vision Group, TUM44Vision-based Navigation

https://github.com/strasdat/Sophus
http://vision.ucla.edu/MASKS/
http://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf
http://ethaneade.com/lie.pdf

Dense Direct Image Alignment

▪ If we know pixel depth, we can „simulate“ an RGB-D image from a different view
point

▪ Ideally, the warped image is the same like the image taken from that pose:

▪ For RGB-D, we have the depth, but want to find the camera motion!

Computer Vision Group, TUM45Vision-based Navigation

Dense Direct Image Alignment

▪ Given a camera motion, we can find and compare corresponding pixels
through projection.

▪ We measure in one image a noisy version of the intensity in the other
image:

▪ A simple assumption is Gaussian noise, e.g. if the noise only comes from
pixel noise on the chip

▪ If we further assume that the measurements are stochastically independent
at each pixel, we can formulate the joint probability

Computer Vision Group, TUM46Vision-based Navigation

Dense Direct Image Alignment

▪ Maximum-likelihood estimation problem

▪ Optimize negative log-likelihood

▪ Product becomes a summation

▪ Exponentials disappear

▪ Normalizers are independent of the pose

▪ This non-linear least squares error function can be efficiently optimized
using standard methods (Gauss-Newton, Levenberg-Marquardt)

Computer Vision Group, TUM47Vision-based Navigation

Least Squares Optimization

▪ If the residuals would be linear in , i.e., ,
optimization would be simple, has a closed-form solution

▪ In this case, the error function and its derivatives are

▪ „Linearizing“ and setting the first derivative to zero yields

Computer Vision Group, TUM48Vision-based Navigation

Non-linear Least Squares Optimization

▪ In direct image alignment, the residuals are non-linear in

▪ Gauss-Newton method, iterate:

▪ Linearize residuals

▪ Solve linearized system

Computer Vision Group, TUM49Vision-based Navigation

Actual Residual Distribution

▪ The Gaussian noise assumption is not valid

▪ Many outliers (occlusions, motion, etc.)

▪ Residuals are distributed with more mass on the larger values

Computer Vision Group, TUM50Vision-based Navigation

- Normal distribution
- Laplace distribution
- Student-t distribution

r

p
(r

)

Iteratively Reweighted Least Squares

▪ Can we change the residual distribution in the least squares optimization?

▪ We can reweight the residuals in each iteration to adapt residual distribution

Computer Vision Group, TUM51Vision-based Navigation

- Normal distribution
- Laplace distribution
- Student-t distribution

r

w
(r

)r
²

E.g., for Laplace distribution:

Huber-Loss

▪ Huber-loss „switches“ between normal (locally at mean) and Laplace
distribution

Computer Vision Group, TUM52Vision-based Navigation

Huber-loss for = 1

Linearization of Image Alignment Residuals

▪ In our direct image alignment case, the linearized residuals are

with

▪ Linearization is only valid for motions that change the projection in a
small image neighborhood (where the gradient hints into the
direction)

Computer Vision Group, TUM53Vision-based Navigation

Coarse-To-Fine

▪ Adapt size of the neighborhood from coarse to fine

Computer Vision Group, TUM54Vision-based Navigation

Coarse motion

Fine motion

Covariance of the Pose Estimate

▪ Non-linear least squares determines
a Gaussian estimate

▪ Due to pose decomposition, we have to change the coordinate frame of the
covariance using the adjoint in SE(3)

Computer Vision Group, TUM55Vision-based Navigation

Levenberg-Marquardt

▪ Idea: damp Gauss-Newton algorithm

▪ More adaptive component-wise damping:

▪ Hybrid between Newton method (λ = 0) and gradient descent with
step size 1/λ (for λ → ∞)

▪ Start with e.g. λ = 0.1 and update λ in each iteration

▪ decrease λ in case of successful update (decreased error)

▪ increase λ in case of unsuccessful update (increased error)

Computer Vision Group, TUM56

+ λ I

+ λ diag()

Part 3: Lessons Learned

▪ The SE(3) Lie algebra is an elegant way of motion representation, especially
for gradient-based optimization of motion parameters

▪ Non-linear least squares optimization is a versatile tool that can be applied
for direct image alignment

▪ Iteratively Reweighted Least Squares allows for overcoming the limitation of
basic least squares on the Gaussian residual distribution/L2 loss on the
residuals

▪ Dense RGB-D odometry through direct image alignment can be
implemented in a non-linear least squares framework.

▪ The linear approximation of the residuals requires a coarse-to-fine optimization
scheme

▪ Non-linear least squares also provides the pose covariance

Computer Vision Group, TUM57Vision-based Navigation

Questions ?

Computer Vision Group, TUM58

