
Visual-Based Navigation Computer Vision Group
J. Stückler, V. Usenko, L. von Stumberg Department of Informatics
Winter Semester 2017/2018 Technical University of Munich

Sheet 1
Topic: Robot Operating System (ROS) and Image Processing Basics

Submission deadline: Monday, 30.10.2017, 23:59
Hand-in via email to visnav ws2017@vision.in.tum.de

General Notice

To be admitted to the final exam, every student has to submit solutions to all
exercise sheets. All exercises should be done in teams of two to three students.
Each student in a team must be able to present the solution to the tutors during
the exercise sessions. If you have not yet done so, please register yourself together
with your team members on the team list in room 02.05.14.

We will use ROS Kinetic on Ubuntu 16.04 in this lab course. It is already installed
on the lab computers. If you want to use your own laptop, you will need to install
these versions of Ubuntu and ROS.

Introduction

The goal of this exercise is to familiarize yourself with the ROS operating system.
You should also get acquainted with the basic ROS tools for image processing,
camera calibration, pose representation, point cloud processing, and visualization.

Exercise 1 (4 points):

Please follow the following tutorials:

� ”Beginner Level” ROS tutorials on http://wiki.ros.org/ROS/Tutorials

� C++ tutorials of the TF library http://wiki.ros.org/tf/Tutorials

� The ”Markers” and ”Interactive Markers” tutorials of the rviz package: http:
//wiki.ros.org/rviz/Tutorials. Also read about the basic marker types
http://wiki.ros.org/rviz/DisplayTypes.

To confirm what you have learned, please answer the following questions:

(a) What is a ROS node?

(b) What is the difference between ROS messages, services, and parameters?

1

http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/tf/Tutorials
http://wiki.ros.org/rviz/Tutorials
http://wiki.ros.org/rviz/Tutorials
http://wiki.ros.org/rviz/DisplayTypes


(c) What does TF stand for, and what is a TF tree? What do you need to
implement in your node to get relative poses between two frames at a specific
time through TF?

(d) What are the possibilities to visualize point clouds using RViz? Give at least
two.

Exercise 2 (4 points):

Download the following two bag files containing camera calibration datasets:

� https://vision.in.tum.de/rgbd/dataset/freiburg1/rgbd_dataset_freiburg1_

rgb_calibration.bag

� https://vision.in.tum.de/rgbd/dataset/freiburg2/rgbd_dataset_freiburg2_

rgb_calibration.bag

Replay the bag files and confirm that you can subscribe to and visualize the images
in RViz.

(a) Use ROS camera calibration to obtain the intrinsic parameters of the RGB
camera on both datasets. Compare your results with the calibration results
given on this website https://vision.in.tum.de/data/datasets/rgbd-dataset/
file_formats#calibration_of_the_color_camera. The checkerboard has
8x6 internal corners and a square side length of 0.02m.

(b) Write a C++ node to undistort the images with your parameters and the
ROS default parameters (see https://vision.in.tum.de/data/datasets/

rgbd-dataset/file_formats#calibration_of_the_color_camera).

� Use cv bridge to convert images to the OpenCV image format.

� Use image geometry::PinholeCameraModel to compute an undistorted
image (in OpenCV format).

� Publish the undistorted image on a ROS topic and visualize it in RViz.

What are your observations of the effect of the differences between both pa-
rameter sets?

Exercise 3 (8 points):

Download the following bag file for use in this exercise:

� https://vision.in.tum.de/rgbd/dataset/freiburg2/rgbd_dataset_freiburg2_

desk.bag

2

https://vision.in.tum.de/rgbd/dataset/freiburg1/rgbd_dataset_freiburg1_rgb_calibration.bag
https://vision.in.tum.de/rgbd/dataset/freiburg1/rgbd_dataset_freiburg1_rgb_calibration.bag
https://vision.in.tum.de/rgbd/dataset/freiburg2/rgbd_dataset_freiburg2_rgb_calibration.bag
https://vision.in.tum.de/rgbd/dataset/freiburg2/rgbd_dataset_freiburg2_rgb_calibration.bag
https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats#calibration_of_the_color_camera
https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats#calibration_of_the_color_camera
https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats#calibration_of_the_color_camera
https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats#calibration_of_the_color_camera
https://vision.in.tum.de/rgbd/dataset/freiburg2/rgbd_dataset_freiburg2_desk.bag
https://vision.in.tum.de/rgbd/dataset/freiburg2/rgbd_dataset_freiburg2_desk.bag


(a) Write a C++ node that reprojects the RGB-D images in the bag file to 3D
point clouds with RGB information for each point. Use the PCL PointCloud
class to represent the point clouds, and use the ROS Default camera calibra-
tion. Visualize the point clouds with RViz. An explanation of the ROS topics
in the bag file is given here: https://vision.in.tum.de/data/datasets/

rgbd-dataset/file_formats#alternate_file_formats

(b) Augment the node to transform the point clouds directly in your node into the
”world” frame given in the tf messages. You can use TF and pcl ros packages
for this task. Visualize the point cloud and the ground truth pose (through
TF) in RViz. How has the ground truth pose been recorded in the benchmark
dataset? What is your observation on the precision of the RGB-D point clouds
and the ground truth pose?

Submission instructions

A complete submission consists both of a PDF file with the solutions/answers to the
questions on the exercise sheet and a ZIP file containing the source code that you
used to solve the given problems. Note all names and matriculation numbers of your
team members in the PDF file. Make sure that your ZIP file contains all files neces-
sary to compile and run your code, but it should not contain any build files or bina-
ries. Please submit your solution via email to visnav ws2017@vision.in.tum.de.

3

https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats#alternate_file_formats
https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats#alternate_file_formats

