
Vision-Based Navigation Computer Vision Group
J. Stückler, V. Usenko, L. von Stumberg Department of Informatics
Winter Semester 2017/2018 Technical University of Munich

Exercise Sheet 3
Topic: Robot Control

Submission deadline: Tuesday, 21.11.2017, 23:59
Hand-in via email to visnav ws2017@vision.in.tum.de

General Notice

The exercises should be done in teams of two to three students. Each student in a
team must be able to present the solution to the tutors during the exercise sessions
on a lab PC in room 02.05.014. The presentations and solutions will be graded
and will count for the final grade of the lab course. If you have not yet done so,
please register yourself together with your team members on the team list in room
02.05.14.

We will use ROS Kinetic on Ubuntu 16.04 in this lab course. It is already installed on
the lab computers. If you want to use your own laptop, you will need to install these
versions of Ubuntu and ROS. Please read the ROS and OpenCV documentation for
further reference.

Introduction

The goal of this exercise is to acquire practical experience with controlling a flying
robot in simulator. You will write a PID controller to make the robot hover on spot
and resist external disturbances.

Exercise 1 (12 points):

Download the code sample for this exercise provided on the course website:

� https://vision.cs.tum.edu/teaching/ws2017/visnav_ws2017/slides

To get you started, it contains a flying robot simulator and a solution skeleton code.

In this exercise you will implement a position PID controller for the flying robot
assuming the ground truth pose of the robot’s center of mass is available.

(a) Get familiar with simulator and skeleton code of the exercise. Launch the
simulator by running the following command:

roslaunch rotors_gazebo mav_with_attitude_control.

launch

Launch the exercise solution in a different terminal:

1

https://vision.cs.tum.edu/teaching/ws2017/visnav_ws2017/slides


roslaunch ex3_solution ex3.launch

Verify that launching solution unpauses the simulator and it starts publishing
messages. What messages does the simulator publish? What are the frequen-
cies of these messages?

(b) Inspect uav controller.hpp class in the solution source code. In the constructor
this class initializes some constants, such as gravity, robot mass, noise charac-
teristics of the sensor. After that it initializes publishers and subscribers and
unpauses the simulator. The groundTruthPoseCallback function receives the
ground truth pose from the simulator, computes velocity and stores pose and
velocity in the class variables. The getPoseAndVelocity function returns cur-
rent estimate of pose and velocity. This function will be used later to switch
easily between ground truth measurements and filter output.

(c) Fill the computeDesiredForce function with the code to compute desired force
using the PID controller for hovering at (0,0,1) with zero velocity. Desired
force can be computed using the following formula:

ẍ = kp(xd − x) + kd(ẋd − ẋ) + ki

∫
(xd − x)dt,

where xd and ẋd are desired position and velocity, x and ẋ are current position
and velocity and kp, kd, ki are proportional, differential and integral gains of
the PID controller.

(d) The simulator provides a low-level controller for the robot that expects com-
mands consisting of desired roll, pitch angles, thrust value and yaw rate, and
executes a motor controller to maintain these desired values. Fill the com-
puteCommandFromForce function with the code to compute desired roll, pitch
angles and thrust. For this exercise you can set the yaw rate to zero. To obtain
roll, pitch and thrust you can use the following equations:

φd =
1

g
(ẍ1 sinψ − ẍ2 cosψ),

θd =
1

g
(ẍ1 cosψ + ẍ2 sinψ),

Td = ẍ3 +mg,

where φd is the desired roll angle, θd the desired pitch angle, Td the desired
thrust and ψ the current yaw angle.

(e) Write a sendControlSignal function that will obtain a current pose and velocity
estimate from getPoseAndVelocity function, compute desired force with com-
puteDesiredForce function, transform it into the message with computeCom-
mandFromForce and publish it.

(f) Publish the control message with the rate of the most high frequency sensor.
You can, for example, call the sendControlSignal in the end of IMU callback.

2



(g) Test the controller in different settings (mav with attitude control.launch,
mav with wind and attitude controller.launch). In the first setting no exter-
nal forces are applied to the robot, in setting 2 at 20 s of the simulation a
constant wind starts blowing for 100 s. Tune the PID controller such that the
robot maintains a stable flight in all those settings.

Submission instructions

A complete submission consists both of a PDF file with the solutions/answers to the
questions on the exercise sheet and a ZIP file containing the source code that you
used to solve the given problems. Note all names and matriculation numbers of your
team members in the PDF file. Make sure that your ZIP file contains all files neces-
sary to compile and run your code, but it should not contain any build files or bina-
ries. Please submit your solution via email to visnav ws2017@vision.in.tum.de.

3


