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Overview

• RGB-D Sensors & 3D Reconstruction

• Signed Distance Functions

• Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance 
Functions (Bylow et al, RSS 2013)

• De-noising, Stabilizing and Completing 3D Reconstructions On-the-go using Plane 
Priors (Dzitsiuk et al, ICRA 2017)

• Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry 
Optimization with Spatially-Varying Lighting (Maier et al, ICCV 2017)
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RGB-D Sensors

• RGB-D: color (RGB) + depth (metric!) 
@ 30 fps
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RGB-D Sensors

•

• Structured Light / Time-of-flight
• Low-cost!

Microsoft Kinect v1

Asus Xtion
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RGB-D Sensors

•

• Structured Light / Time-of-flight
• Low-cost!

Microsoft Kinect v1

Intel RealSense R200

Occipital Structure SensorAsus Xtion Lenovo Phab 2 Pro Asus ZenFone AR

Google Tango
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• Task: given a stream of RGB-D frames of a real-world scene, compute its 3D shape 
that maximizes the geometric consistency

RGB-D based 3D Reconstruction
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• Task: given a stream of RGB-D frames of a real-world scene, compute its 3D shape 
that maximizes the geometric consistency

• SLAM: Simultaneous Localization and Mapping (RGB-D-SLAM)

• Fusion of RGB-D frames in dense volumetric 3D representation (focus in this talk: 
Signed Distance Fields)

RGB-D based 3D Reconstruction

KinectFusion [Newcombe et al., ISMAR 2011]
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• Robotics: real-time 3D reconstruction of large-
scale environments (e.g. autonomous drones)

3D Reconstruction Applications

Parrot AR drone
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• Robotics: real-time 3D reconstruction of large-
scale environments (e.g. autonomous drones)

• Requirement of high-quality 3D content for 
Augmented Reality, Virtual Reality, … 

•Usually: manual modelling (e.g. Maya)

• Wide availability of commodity RGB-D sensors: 
efficient methods for 3D reconstruction of 
real-word scenes

• Challenge: how to reconstruct high-quality 3D 
models from low-cost depth sensors?

HTC Vive

NVIDIA VR Funhouse

3D Reconstruction Applications

Parrot AR drone

Microsoft HoloLens
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Overview

• RGB-D Sensors & 3D Reconstruction

• Signed Distance Functions

• Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance 
Functions (Bylow et al, RSS 2013)

• De-noising, Stabilizing and Completing 3D Reconstructions On-the-go using Plane 
Priors (Dzitsiuk et al, ICRA 2017)
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• Voxel grid: dense (e.g. KinectFusion) or sparse (e.g. Voxel Hashing)

Signed Distance Functions1

Volumetric 3D model representation

1 “A volumetric method for building complex models from range images”, Curless and Levoy, SIGGRAPH 1996
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• Voxel grid: dense (e.g. KinectFusion) or sparse (e.g. Voxel Hashing)

• Each voxel stores:
• Signed Distance Function (SDF): signed distance to closest surface
• Color values
• Weights

Signed Distance Functions1

Volumetric 3D model representation

1 “A volumetric method for building complex models from range images”, Curless and Levoy, SIGGRAPH 1996
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Signed Distance Fields

• Integrate depth maps into SDF with their 
estimated camera poses

2 ”Marching cubes: A high resolution 3D surface construction algorithm”, Lorensen and Cline, SIGGRAPH 1987

Fusion of depth maps
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Signed Distance Fields

• Integrate depth maps into SDF with their 
estimated camera poses

• Voxel updates using weighted average

• Extract ISO-surface with Marching Cubes2

(triangle mesh)

2 ”Marching cubes: A high resolution 3D surface construction algorithm”, Lorensen and Cline, SIGGRAPH 1987

Fusion of depth maps



Real-Time Camera Tracking and 3D 
Reconstruction Using Signed Distance Functions

E. Bylow1, J. Sturm2, C. Kerl2, F. Kahl1, D. Cremers2

1 Lund University 2 Technical University of Munich

Robotics: Science and Systems (RSS)
2013, Berlin, Germany
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System Pipeline

• Based on KinectFusion (Newcombe et al, ISMAR 2011)
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System Pipeline

• Based on KinectFusion (Newcombe et al, ISMAR 2011)

Marching Cubes:
3D Mesh

3D model: Signed Distance 
Field (SDF volume)

Direct SDF 
Camera Tracking
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Camera tracking
• Estimate current camera pose from input RGB-D frame

• KinectFusion: synthetic depth map from SDF (raycasting) + ICP alignment
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Camera tracking
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• KinectFusion: synthetic depth map from SDF (raycasting) + ICP alignment

• Novel direct camera tracking against SDF: direct minimization of error between input 
depth map and SDF:
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Extension: CopyMe3D
CopyMe3D: Scanning and Printing Persons in 3D (Sturm et al, GCPR 2013)
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CopyMe3D
Printed 3D figures
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CopyMe3D2
Full-body scanning



De-noising, Stabilizing and Completing 3D 
Reconstructions On-the-go using Plane Priors

M. Dzitsiuk1,2, J. Sturm2, R. Maier1, L. Ma1, D. Cremers1

1 Google 2 Technical University of Munich

International Conference on Robotics and Automation (ICRA), May 2017, Singapore



39

3D Reconstruction with Plane Priors
Real-time 3D reconstruction on a mobile device

Chisel: Real Time Large Scale 3D Reconstruction Onboard a Mobile Device using Spatially Hashed 
Signed Distance Fields [Klingensmith et al., 2015]



40

3D Reconstruction with Plane Priors

Problems with real-time 3D reconstruction: noisy, incomplete, no segmentation

Motivation
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3D Reconstruction with Plane Priors

Solution idea: detect and use planes

Motivation
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3D Reconstruction with Plane Priors
Approach

• Input: Signed Distance Field divided into voxel blocks
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3D Reconstruction with Plane Priors
Approach

• Input: Signed Distance Field divided into voxel blocks

• 1. Find local plane candidates

• 2. Merge planes

• 3. De-noising
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Results: de-noising

3D Reconstruction with Plane Priors

Before After
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Results

3D Reconstruction with Plane Priors

Hole filling
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Results

3D Reconstruction with Plane Priors

Hole filling

Classify reconstruction geometry:
• Floor or wall (area, angle with gravity)
• Object (mesh connected components)

Segmentation
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3D Reconstruction with Plane Priors
Results: real-time 3D reconstruction on mobile device



Intrinsic3D: High-Quality 3D Reconstruction by 
Joint Appearance and Geometry Optimization 
with Spatially-Varying Lighting

R. Maier1,2, K. Kim1, D. Cremers2, J. Kautz1, M. Nießner2,3

International Conference on Computer Vision (ICCV) 
October 2017, Venice, Italy

OursFusion

1 NVIDIA 3 Stanford University2 TU Munich
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State-of-the-art

• Challenge: how to reconstruct high-quality 3D models with best-possible geometry 
and color from low-cost depth sensors?

RGB-D based 3D Reconstruction
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State-of-the-art

• Challenge: how to reconstruct high-quality 3D models with best-possible geometry 
and color from low-cost depth sensors?

• Real-time, robust, fairly accurate geometric reconstructions

RGB-D based 3D Reconstruction

KinectFusion, 2011

“KinectFusion: Real-time Dense 
Surface Mapping and Tracking”, 
Newcombe et al., ISMAR 2011.
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State-of-the-art

• Challenge: how to reconstruct high-quality 3D models with best-possible geometry 
and color from low-cost depth sensors?

• Real-time, robust, fairly accurate geometric reconstructions

RGB-D based 3D Reconstruction

DynamicFusion, 2015KinectFusion, 2011

“KinectFusion: Real-time Dense 
Surface Mapping and Tracking”, 
Newcombe et al., ISMAR 2011.

“DynamicFusion: Reconstruction and Tracking of 
Non-rigid Scenes in Real-time”, Newcombe et al., 
CVPR 2015.
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State-of-the-art

• Challenge: how to reconstruct high-quality 3D models with best-possible geometry 
and color from low-cost depth sensors?

• Real-time, robust, fairly accurate geometric reconstructions

RGB-D based 3D Reconstruction

BundleFusion, 2017DynamicFusion, 2015KinectFusion, 2011

“KinectFusion: Real-time Dense 
Surface Mapping and Tracking”, 
Newcombe et al., ISMAR 2011.

“DynamicFusion: Reconstruction and Tracking of 
Non-rigid Scenes in Real-time”, Newcombe et al., 
CVPR 2015.

“BundleFusion: Real-time Globally Consistent 
3D Reconstruction using On-the-fly Surface 
Re-integration”, Dai et al., ToG 2017.
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State-of-the-art
Voxel Hashing
• Baseline RGB-D based 3D reconstruction 

framework
• initial camera poses 

• sparse SDF reconstruction

“Real-time 3D Reconstruction at Scale using Voxel Hashing”, Nießner et al., ToG 2013.
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State-of-the-art
Voxel Hashing
• Baseline RGB-D based 3D reconstruction 

framework
• initial camera poses 

• sparse SDF reconstruction

• Challenges:
• (Slightly) inaccurate and over-smoothed geometry

• Bad colors

• Inaccurate camera pose estimation

• Input data quality (e.g. motion blur, sensor noise)

• Goal: High-Quality Reconstruction of 
Geometry and Color

“Real-time 3D Reconstruction at Scale using Voxel Hashing”, Nießner et al., ToG 2013.
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State-of-the-art
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State-of-the-art
High-Quality Colors [Zhou2014]

“Color Map Optimization for 3D Reconstruction with Consumer Depth 
Cameras”, Zhou and Koltun, ToG 2014

Optimize camera poses and image deformations 
to optimally fit initial (maybe wrong) 
reconstruction

But: HQ images required, no geometry refinement 
involved
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State-of-the-art
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“Color Map Optimization for 3D Reconstruction with Consumer Depth 
Cameras”, Zhou and Koltun, ToG 2014

Optimize camera poses and image deformations 
to optimally fit initial (maybe wrong) 
reconstruction

But: HQ images required, no geometry refinement 
involved

High-Quality Geometry [Zollhoefer2015]

“Shading-based Refinement on Volumetric Signed Distance Functions”, 
Zollhoefer et al., ToG 2015

Adjust camera poses in advance (bundle 
adjustment) to improve color
Use shading cues (RGB) to refine geometry 
(shading based refinement of surface & albedo)

But: RGB is fixed (no color refinement based on 
refined geometry)
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State-of-the-art
High-Quality Colors [Zhou2014]

“Color Map Optimization for 3D Reconstruction with Consumer Depth 
Cameras”, Zhou and Koltun, ToG 2014

Optimize camera poses and image deformations 
to optimally fit initial (maybe wrong) 
reconstruction

But: HQ images required, no geometry refinement 
involved

High-Quality Geometry [Zollhoefer2015]

“Shading-based Refinement on Volumetric Signed Distance Functions”, 
Zollhoefer et al., ToG 2015

Adjust camera poses in advance (bundle 
adjustment) to improve color
Use shading cues (RGB) to refine geometry 
(shading based refinement of surface & albedo)

But: RGB is fixed (no color refinement based on 
refined geometry)

Idea: jointly optimize for geometry, albedo and image formation model to 
simultaneously obtain high-quality geometry and appearance!
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Our Method
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Our Method

• Temporal view sampling & filtering 
techniques (input frames)

• Joint optimization of 
• surface & albedo (Signed Distance 

Field) 
• image formation model

• Lighting estimation using Spatially-
Varying Spherical Harmonics (SVSH)

• Optimized colors (by-product)
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Approach
Overview

High-Quality 3D 
Reconstruction

RGB-D SDF Fusion

Temporal view sampling / filtering

Shading-based Refinement
(Shape-from-Shading)

Spatially-Varying
Lighting Estimation

Joint Appearance and 
Geometry Optimization
• surface
• albedo
• image formation model
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Approach
Overview

RGB-D SDF Fusion
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Approach
Overview

Temporal view sampling / filtering
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Keyframe Selection

• Compute per-frame blur score (for color image)3

3 “The blur effect: perception and estimation with a new no-reference perceptual blur metric”, Crete et al., SPIE 2007.

Frame 81 Frame 84

• Select frame with best score within a fixed size window as keyframe
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Sampling / Filtering

• Sample from selected keyframes only

• Collect observations for voxel in input views:

Sampling of voxel observations
Input keyframes

Reconstruction
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Sampling / Filtering

• Sample from selected keyframes only

• Collect observations for voxel in input views:

• Observation weights: view-dependent on 
normal and depth

• Filter observations: keep only best 5 
observations by weight

Sampling of voxel observations

Voxel center transformed and projected into input view

Input keyframes

Reconstruction
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Approach
Overview

Shading-based Refinement
(Shape-from-Shading)

Spatially-Varying
Lighting Estimation

Joint Appearance and 
Geometry Optimization
• surface
• albedo
• image formation model

Double-hierarchical
(coarse-to-fine: SDF Volume / RGB-D)
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Shape-from-Shading

• Shading equation:



87

Shape-from-Shading
surface normal

• Shading equation:
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Shape-from-Shading

lighting

surface normal

• Shading equation:
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Shape-from-Shading
albedo
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Shape-from-Shading
albedo

lighting

surface normal

• Shading equation:

Shading
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Shape-from-Shading

• Shading-based refinement:

• Intuition: high-frequency changes in surface geometry → shading cues in input images

albedo

lighting

surface normal

• Shading equation:

Shading
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Shape-from-Shading

• Shading-based refinement:

• Intuition: high-frequency changes in surface geometry → shading cues in input images

• Estimate lighting given surface and albedo (intrinsic material properties)

albedo

lighting

surface normal

• Shading equation:

Shading
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Shape-from-Shading

• Shading-based refinement:

• Intuition: high-frequency changes in surface geometry → shading cues in input images

• Estimate lighting given surface and albedo (intrinsic material properties)

• Estimate surface and albedo given the lighting: minimize difference between estimated 
shading and input luminance

albedo

lighting

surface normal

• Shading equation:

Shading

-
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Approach
Overview

Spatially-Varying
Lighting Estimation
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• Encode incident lighting for a given surface point

• Smooth for Lambertian surfaces

Lighting Estimation
Spherical Harmonics (SH)
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• Encode incident lighting for a given surface point

• Smooth for Lambertian surfaces

• SH Basis functions Hm parametrized by unit normal n

• Good approx. using only 9 SH basis functions (2nd order)
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Lighting Estimation
Spherical Harmonics (SH)
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• Encode incident lighting for a given surface point

• Smooth for Lambertian surfaces

• SH Basis functions Hm parametrized by unit normal n

• Good approx. using only 9 SH basis functions (2nd order)

• Estimate SH coefficients:

Lighting Estimation
Spherical Harmonics (SH)

• Shortcoming: purely directional → cannot represent scene lighting for all surface 
points simultaneously
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Spatially-Varying Lighting
Subvolume Partitioning
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Spatially-Varying Lighting

• Partition SDF volume into 
subvolumes

• Estimate independent SH 
coefficients for each 
subvolume

• Obtain per-voxel SH 
coefficients through tri-linear 
interpolation

Subvolume Partitioning
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Spatially-Varying Lighting
Joint Optimization
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Spatially-Varying Lighting

• Estimate SVSH coefficients for all subvolumes jointly:

Joint Optimization
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Spatially-Varying Lighting

• Estimate SVSH coefficients for all subvolumes jointly:

Joint Optimization

Similarity between estimated shading and input luminance

Data term:

Laplacian regularizer:

Smooth illumination changes
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Approach
Overview

Joint Appearance and 
Geometry Optimization
• surface
• albedo
• image formation model
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• Joint optimization of geometry, albedo and image formation model (camera poses 
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Shading-based SDF optimization

with
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Joint Optimization

• Joint optimization of geometry, albedo and image formation model (camera poses 
and camera intrinsics):

Shading-based SDF optimization

Gradient-based shading constraint (data term)
Volumetric regularizer: smoothness in distance values (Laplacian)
Surface Stabilization constraint: stay close to initial distance values
Albedo regularizer: constrain albedo changes based on chromaticity (Laplacian)

with
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Joint Optimization

• Idea: maximize consistency between estimated voxel shading and sampled 
intensities in input luminance images (gradient for robustness)

Shading Constraint (data term)
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Joint Optimization

• Idea: maximize consistency between estimated voxel shading and sampled 
intensities in input luminance images (gradient for robustness)

Shading Constraint (data term)

Best views for voxel and respective view-dependent weights
Shading: allows for optimization of surface (through normal) and albedo

Sampling: allows for optimization of camera poses and camera intrinsics
Voxel center transformed and projected into input view
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• Recompute voxel colors after optimization at each level

Optimal colors
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Recolorization

• Recompute voxel colors after optimization at each level

• Sampling

• Sample from keyframes only

• Collect, weight and filter observations

• Weighted average of observations:

Optimal colors
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Results: Ground Truth Geometry
Frog (synthetic)

Ours

Fusion Ground truth
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Results: Ground Truth Geometry
Frog (synthetic) Zollhöfer et al. 15

• Quantitative surface accuracy evaluation
• Color coding: absolute distances (ground truth)
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Results: Ground Truth Geometry
Frog (synthetic)

Ours

Zollhöfer et al. 15

• Quantitative surface accuracy evaluation
• Color coding: absolute distances (ground truth)

Mean absolute deviation:
• Ours: 0.222mm (std.dev. 0.269mm)
• Zollhöfer et al: 0.278mm (std.dev. 0.299mm)

→ 20.14% more accurate
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Qualitative Results
Relief (geometry)

Input Color

Fusion

Ours

Zollhöfer et al. 15

Ours
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Qualitative Results
Fountain (appearance)

Input Color Ours

Fusion

Zollhöfer et al. 15

Ours
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Qualitative Results
Lion

Input Color
Geometry (ours) Appearance (ours)

Fusion Ours Fusion Ours
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Qualitative Results
Tomb Statuary

Input Color Appearance (ours)

Fusion Ours

Geometry (ours)

Fusion Ours
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Luminance

Shading: Global SH vs. SVSH
Fountain
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Luminance

Shading: Global SH vs. SVSH
Fountain
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Luminance

Shading: Global SH vs. SVSH
Fountain

Global SH

DifferenceShading
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Luminance

Shading: Global SH vs. SVSH
Fountain

Global SH

SVSH

Difference

DifferenceShading

Shading
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Conclusion

• Temporal view sampling & filtering techniques

• Spatially-Varying Lighting estimation

• Joint optimization of surface & albedo (SDF) 
and image formation model

• Optimized texture as by-product

High-Quality 3D Reconstruction of Geometry and Appearance
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• Temporal view sampling & filtering techniques

• Spatially-Varying Lighting estimation

• Joint optimization of surface & albedo (SDF) 
and image formation model

• Optimized texture as by-product

High-Quality 3D Reconstruction of Geometry and Appearance

Thank you!

Questions?

Robert Maier

Technical University of Munich
Computer Vision Group

robert.maier@in.tum.de
https://vision.in.tum.de/members/maierr


