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Computer Vision Group in TUM

http://vision.in.tum.de

http://vision.in.tum.de
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Organization

Contents

• ≈ 20 lectures + 10 tutorials, 3h + 3h weekly
• Written exam at the end
• 8 ECTS

People

• Lectures: Dr. Yvain QUÉAU (based on material from
previous years by Prof. Daniel CREMERS)

• Tutorials: Christiane Sommer, Nikolaus Demmel

Yvain Christiane Nikolaus Daniel
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Organization

Lectures

• Wednesday 10:15 - 11:45
+ Thursday 10:15 - 11:00

• Room: 09.02.023
• Slides online after the lecture

Tutorials

• Tuesday 16:00 - 18:15
• Room: 02.05.014
• Exercise sheet posted the week before the tutorial
• Solution discussed in class, then posted online

Check detailed agenda (date + topic) online:
https:

//vision.in.tum.de/teaching/ws2017/vmcv2017
(TUMOnline may be incorrect)

https://vision.in.tum.de/teaching/ws2017/vmcv2017
https://vision.in.tum.de/teaching/ws2017/vmcv2017
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Organization

Online Resources:
https://vision.in.tum.de/teaching/ws2017/vmcv2017

• Agenda
• Slides
• Exercise sheets + solutions
• Recording of former lectures by Prof. Daniel CREMERS

Password: vmcv_ws1718

Contact

• Questions: cvvm-ws17@vision.in.tum.de
• Office hours: please ask for a meeting by email
• Yvain’s office: 02.09.053
• Christiane’s office: 02.09.037
• Nikolaus’ office: 02.09.057

https://vision.in.tum.de/teaching/ws2017/vmcv2017
cvvm-ws17@vision.in.tum.de
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Goal of the lecture

• Give an overview of computer vision
• Describe major inverse problems in computer vision
• Provide a generic mathematical approach for solving

them
• Show how to implement such solutions on CPU
• Discuss open problems and limits of the state-of-the-art

Required: basic analysis, linear algebra, statistics

Useful: optimization (Convex Optimization for Computer Vision
and Machine Learning - IN2330)
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Recommended readings

P. Kornprobst, G. Aubert, “Mathematical Problems in Image
Processing, Partial Differential Equations and the Calculus of
Variations”, Springer 2006.

T. Chan, J. Shen, “Image Processing and Analysis: Variational,
PDE, Wavelet, and Stochastic Methods”, SIAM 2005.

J.-M. Morel, S. Solimini, “Variational Methods in Image
Segmentation”, Birkhäuser 1995.

K. Bredies, D. Lorenz, “Mathematische Bildverarbeitung:
Einführung in Grundlagen und moderne Theorie”, Vieweg &
Teubner 2011.
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What is computer vision?
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Computer vision tools: Sensors

Camera Movie camera Depth sensor

Infrared sensor Ultrasound sensor X-ray scanner

• Sensors capture images of the world

• Computer vision aims at analyzing / understanding these
visual signals
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Computer vision: What for?

Autonomous driving Augmented reality

Robotics

And also...

• Computer-assisted
medical diagnostic

• Face recognition
(surveillance)

• Surface inspection (quality
control)

• Relighting (VFX)
• Earth monitoring
• ...
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Different types of images: Cameras

Measures photons emitted (reflected) by the scene’s surface

• Greylevel image = function u associating to each pixel
(x , y) an integer value:
u : [1,N]× [1,M]→ {0, . . . ,255}; (x , y) 7→ u(x , y)

• RGB image:
u : [1,N]× [1,M]→ {0, . . . ,255}3; (x , y) 7→ u(x , y)

• Movie camera:
u : [1,N]× [1,M]× [1,T ]→ {0, . . . ,255}3; (x , y , t) 7→
u(x , y , t)
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Different types of images: Depth sensors

Measures distances to the scene’s surface (based on
triangulation or time-of-flight), sometimes also provides IR

image

• IR image = greylevel image:
u : [1,N]× [1,M]→ {0, . . . ,255}; (x , y) 7→ u(x , y)

• Depth image:
u : [1,N]× [1,M]→ R; (x , y) 7→ u(x , y)
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Different types of images: X-ray Scanners

Measures attenuation of X-ray for a given time and angle

X-ray image = sinogram:
u : [0,2π]× [0,1]→ [0,1]; (x , y) 7→ u(x , y)
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From sensors to visual understanding: What is that?

• Raw measurements from a sensor are easily understood
by humans, but not by computers

• Computer vision aims at making computers “understand”
what they see

(image source: semantic segmentation by C. HARIZBAS et al.,
SSVM 2015)
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From sensors to visual understanding: Where am I?

• Various information can be extracted from visual clues:
location, map of the environment, etc.

(image source: stereo SLAM by R. WANG et al., ICCV 2017 –
see video)
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From sensors to visual understanding: Why do I see such
images?

• Understanding the world requires understanding what led
to the observed images, e.g. which 3D-shape could have
produced a given set of RGB or depth images (inverse
problem)

(image source: copyme 3D by J. STURM et al., GCPR 2013 –
see video)
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How to achieve this task?
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Paradigm 1: machine learning

Case 1: Humans can solve the problem, though they cannot
explain why (e.g., recognition tasks): machine learning

Provide the machine with annotated data;
Let it “learn” what a cat is

Based on the numerous examples it knows,
machine can tell “this is a cat” when

given a new image
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Paradigm 2: variational methods

Case 2: Humans know how they would solve the problem (e.g.,
restoration tasks): variational methods

1) Model the signal acquisition
process:
u0(t) = u(t) +N (0, σ2), t ∈ [0,1]
(u0: observed signal, u: uncorrupted
signal, N : random Gaussian noise)

2) Invoke Bayesian inference to turn the problem into a
continuous optimization problem:

min
u: [0,1]→R

∫ 1

t=0
|u(t)− u0(t)|2 + λ|u′(t)|2 dt

3) Turn the optimization problem into a differential equation
(Euler-Lagrange):

λu”(t)− u(t) = u0(t), t ∈ [0,1]

4) Solve the differential equation with the computer
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Machine learning VS Variational methods

Machine learning

• AI-oriented
• Not clear why it works
• Human tells the

computer the solution
• Requires heavy

computational power
• Broad range of

applications
• Community growing

since 2012

Variational methods

• Mathematics-oriented
• Guarantee of optimality
• Human tells the

computer how to solve
• Usually much more

efficient
• Restricted to problems

we can model
• Community reducing

since 2012

This lecture: variational methods

(in fact, these paradigms are much more complementary that it
may seem)
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What are variational methods?
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A few classic inverse problems in computer vision:
Denoising

Find an image u : Ω ⊂ R2 → R “close to” the noisy data
u0 : Ω ⊂ R2 → R, but “smoother”:

min
u: Ω⊂R2→R

∫∫
(x,y)∈Ω

|u(x , y)− u0(x , y)|2︸ ︷︷ ︸
“close to”

+λ ‖∇u(x , y)‖2︸ ︷︷ ︸
“smoother”

dxdy

(image source: fast Mumford-Shah denoising by E.
STREKALOVSKIY and D. CREMERS, ECCV 2014)
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A few classic inverse problems in computer vision:
Segmentation

Find an image u : Ω ⊂ R2 → R “close to” the input image
u0 : Ω ⊂ R2 → R, but “piecewise constant”:

min
u: Ω⊂R2→R

∫∫
(x,y)∈Ω

|u(x , y)− u0(x , y)|2︸ ︷︷ ︸
“close to”

+λ δ ‖∇u(x , y)‖︸ ︷︷ ︸
“piecewise constant”

dxdy

(image source: fast Mumford-Shah denoising by E.
STREKALOVSKIY and D. CREMERS, ECCV 2014 – see video)
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A few classic inverse problems in computer vision:
Inpainting

Find an image u : Ω ⊂ R2 → R “close to” the input image
u0 : Ω ⊂ R2 → R on Ω ⊂ Ω, but “smooth elsewhere”:

min
u: Ω⊂R2→R

∫∫
(x,y)∈Ω

|u(x , y)− u0(x , y)|2︸ ︷︷ ︸
“close to on Ω”

dxdy

+ λ

∫∫
(x,y)∈Ω\Ω

‖∇u(x , y)‖2

︸ ︷︷ ︸
“smooth elsewhere”

dxdy
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A few classic inverse problems in computer vision: Data
compression

Find an image u : Ω ⊂ R2 → R “close to” the compressed
image u0 : Ω ⊂ R2 → R on Ω ⊂ Ω, but “smooth elsewhere”:

min
u: Ω⊂R2→R

∫∫
(x,y)∈Ω

|u(x ,y)−u0(x ,y)|2+λ‖∇u(x ,y)−∇u0(x ,y)‖2

︸ ︷︷ ︸
“close to on Ω”, at order 1

dxdy

+ µ

∫∫
(x,y)∈Ω\Ω

‖∇u(x , y)‖2

︸ ︷︷ ︸
“smooth elsewhere”

dxdy

(image source: normal integration by Y. QUÉAU et al., Arxiv
2017)
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A few classic inverse problems in computer vision:
2D-reconstruction (tomography)

Find a “smooth” image u : Ω ⊂ R2 → R “whose Radon
transform matches” the noisy sinogram u0 : [0,1]× [0,2π]→ R

min
u: Ω⊂R2→R

∫∫
(x,y)∈Ω

|u(x , y)−R−1(u0)(x , y)|2︸ ︷︷ ︸
“matches sinogram”

+λ ‖∇u(x , y)‖2︸ ︷︷ ︸
“smooth”

dxdy
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A few classic inverse problems in computer vision:
Combining several variational problems

All these tools can be combined in a big variational problem if
needed. E.g., joint reconstruction, inpainting and segmentation
for Synchrotron X-ray tomography:

Max IV synchrotron Acquisition device Sinogram

Reconstruction only Reconstruction + Segmentation + Inpainting

(image source: CT reconstruction by F. LAUZE et al., SSVM
2017)
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A few classic inverse problems in computer vision:
Single-view 3D-reconstruction

(image source: photometric
stereo by Y. QUÉAU et al., JMIV
2017 – see video)

Find a depth map u : Ω ⊂ R2 → R “explaining” the image
I : Ω ⊂ R2 → R:

min
u: Ω⊂R2→R

∫∫
(x,y)∈Ω

‖a(x , y) · ∇u(x , y)− I(x , y)‖2 dxdy
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A few classic inverse problems in computer vision:
shading-aware depth refinement

(image source: depth
super-resolution by S.
PENG et al., ICCVW
2017)

Find a high-res depth map u : ΩHR ⊂ R2 → R “close to” a
low-res one u0 : ΩLR ⊂ R2 → R which “matches” a high-res
image I : ΩHR ⊂ R2 → R:

min
u: Ω⊂R2→R

∫∫
(x,y)∈ΩLR

|Ku(x , y)− u0(x , y)|2 dxdy︸ ︷︷ ︸
“close to”

+ λ

∫∫
(x,y)∈ΩHR

‖a(x , y) · ∇u(x , y)− I(x , y)‖2

︸ ︷︷ ︸
“matches”
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Variational Methods = a generic tool for inverse problems

Whatever the sensor:

• Camera
• Depth sensor
• X-ray sensor
• ...

Whatever the task:

• Restoration
• Reconstruction
• Segmentation
• ...

Recast the problem as an optimization problem:

min
u: Ω⊂Rn→Rd

∫
Ω

L(x ,u(x),∇u(x), . . .) dx

Key issues

• What are Ω, n and d?
• How to choose L?
• Is there a solution? Unique?
• How to discretize and solve the optimization problem?
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Where do such ideas come from?
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Historical motivation I

• 1657: Fermat’s principle (“The path taken between two
points by a ray of light is the path that can be traversed in
the least time”)

• 1744 (Euler) : first necessary condition to solve
min

u: [xA,xB ]→R

∫ xB

xA
L(x ,u(x),u′(x)) dx

u(xA) = uA

u(xB) = uB

• 1746: principle of least actions (Maupertuis): “Nature is
thrifty in all its actions”

• 1755: reformulation by Lagrange of Euler’s necessary
condition (⇒ Euler-Lagrange equation in 1766) :

∂L
∂u
− d

dx

(
∂L
∂u′

)
= 0

• 1786: extension to min
u

∫ xB

xA
L(x ,u(x),u′(x),u”(x)) dx

(Legendre)
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Historical Motivation II: Before that...

Dido’s problem

≈ 800 BC: Queen Dido lands in Carthago...

What is the closed curve
which has the maximum
area for a given perimeter?

The brachistochrone

• 1638: first mention by Galileo
• 1696: challenge by Johann

Bernoulli to his fellows
• 1697: solutions by Johann

Bernoulli, Leibniz, Newton and...
Jacob Bernoulli
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Historical Motivation III: Hilbert

• 19th century: Dirichlet, Riemann, Weierstrass and
Neumann study Dirichlet’s problem :

min
: Ω→R

∫
Ω

‖∇u(x)‖2 dx (1)

depending on boundary conditions, with Ω ⊂ R, R2 or R3

• 1900: Hilbert problems number 20 and 23
– Number 20: Do all variational problems with certain
boundary conditions have solutions?
– Number 23: Further development of the calculus of
variations

• 1900-... : Hilbert space theory, optimization,...
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Conclusion on those historical landmarks

It is natural to formulate computer vision tasks as variational
problems
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Overview of the Lecture

Chapter 0: Introduction

Chapter 1: Images and Image Filtering

Chapter 2: Diffusion Filtering

Chapter 3: Variational Calculus

Chapter 4: Variational Image Restoration

Chapter 5: Image Segmentation I – Basics

Chapter 6: Image Segmentation II – Variational Approaches

Chapter 7: Image Segmentation III – Bayesian Inference

Chapter 8: Level Set Methods

Chapter 9: Convex Relaxation Methods I – Segmentation

Chapter 10: Motion Estimation & Optical Flow

Chapter 11: Convex Relaxation Methods II – Multiview Reconstruction

Chapter 12: Photometric Techniques
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