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Inverse Problems, Ill-Posedness and Regularization

In mathematics, the conversion of measurement data into
information about the observed object or the observed physical
system is referred to as an inverse problem.

Following Hadamard (1902), a mathematical problem is called
well-posed iff:

1 A solution exists.

2 The solution is unique.

3 The solution’s behavior changes continuously with the
initial conditions.

Inverse problems are often ill-posed. Since the measurement
data is often not sufficient to uniquely characterize the
observed object or system, one introduces prior knowledge to
disambiguate which solutions are apriori more likely. In the
context of variational methods this prior knowledge gives rise
to the regularity term.
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Image Restoration: Denoising
Image restoration is a classical inverse problem: Given an
observed image f : Ω→ R and a (typically stochastic) model of
an image degradation process, we want to restore the original
image u : Ω→ R.

Image denoising is an example of image restoration where we
assume that the true image u is corrupted by (additive) noise:

f = u + η, η ∼ N (0, σ).

Rudin, Osher, Fatemi (1992) denoise f by minimizing a
quadratic data term with Total Variation (TV) regularization:

min
u

1
2

∫
|u − f |2dx +

∫
|∇u|dx .

This gives rise to the Euler-Lagrange equation

u − f − div
(
∇u
|∇u|

)
= 0.

Other noise models and regularizers are conceivable.



Variational Image
Restoration

Dr. Yvain QUÉAU

Inverse Problems and
Image Restoration

Image Denoising

Image Deblurring

Inverse Problems and
Bayesian Inference

Motion Blur and
Defocus Blur

Video Super
Resolution

Inpainting

Numerical Solving

Conclusions

updated 2017-11-23 7/51

Image Restoration: Denoising

original noisy denoised

(Goldlücke, Strekalovskiy, Cremers, SIAM J. Imaging Sci. ’12)
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Image Restoration: Deblurring

A prototypical blur model is given by

f = A ∗ u + η η ∼ N (0, σ),

with a blur kernel A.

In a variational setting, this process can be inverted by
minimizing the TV deblurring functional:

min
u

1
2

∫
|A ∗ u − f |2dx +

∫
|∇u|dx .

For symmetric kernels A, the Euler-Lagrange equation is given
by:

A ∗ (A ∗ u − f )− div
(
∇u
|∇u|

)
= 0,

and the gradient descent equation

∂u
∂t

= −A ∗ (A ∗ u − f ) + div
(
∇u
|∇u|

)
.
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Image Restoration: Deblurring

Original blurred and noisy deblurred

(Goldluecke, Cremers, ICCV 2011)
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Inverse Problems and Bayesian Inference

The framework of Bayesian inference allows to systematically
derive functionals for different image formation models.

Let u be the unknown true image and f the observed one, then
we can write the joint probability for u and f as:

P(u, f ) = P(u|f )P(f ) = P(f |u)P(u).

Rewriting this expression we obtain the Bayesian formula
(Thomas Bayes 1887):

P(u|f ) =
P(f |u)P(u)

P(f )
.

Maximum Aposteriori (MAP) estimation aims at computing the
most likely solution û given f by maximizing the posterior
probability P(u|f )

û = arg max
u
P(u|f ) = arg max

u
P(f |u)P(u).

P(f |u) is called the likelihood and P(u) the prior.
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MAP Estimation in the Discrete Setting

Let us assume n independent pixels. For each the measured
intensity fi is given by the true intensity ui plus additive
Gaussian noise. This corresponds to the likelihood

P(fi |ui ) ∝ exp
(
− (ui − fi )2

2σ2

)
.

Since all measurements are mutually independent, we obtain
for the entire vector f = (f1, . . . , fn) of pixel intensities:

P(f |u) =
n∏

i=1

P(fi |u) =
n∏

i=1

P(fi |ui ) ∝
n∏

i=1

exp
(
− (ui − fi )2

2σ2

)
.

We now expand the prior:

P(u) = P(u1 . . . un) = P(u1|u2 . . . un)P(u2 . . . un) ∝
n−1∏
i=1

P(ui |ui+1),

where we assumed a Markov property, namely that the
probability of ui is sufficiently characterized by its neighbor.
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MAP Estimation in the Discrete Setting

Assuming a simple smoothness prior, we have:

P(u) ∝
n−1∏
i=1

P(ui |ui+1) ∝
n−1∏
i=1

exp (−λ|ui − ui+1|) .

With these assumptions, the posterior distribution is given by:

P(u|f ) ∝
n∏

i=1

exp
(
−|fi − ui |2

2σ2

) n−1∏
i=1

exp
(
− λ|ui − ui+1|

)
Rather than maximizing this probability distribution, one can
equivalently minimize its negative logarithm (because the
logarithm is strictly monotonous).

It is given by the energy

E(u) = − logP(u|f ) =
n∑

i=1

|fi − ui |2

2σ2 + λ

n−1∑
i=1

|ui − ui+1|+ const.
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MAP Estimation in the Continuous Setting

Similarly one can define Bayesian MAP optimization in the
continuous setting, where the likelihood is given by:

P(f |u) ∝ exp
(
−
∫
|f (x)− u(x)|2

2σ2 dx
)
,

and the prior is given by

P(u) ∝ exp
(
−λ
∫
|∇u(x)|dx

)
.

Thus the data term in variational methods corresponds to the
likelihood, whereas the regularizer corresponds to the prior:

E(u) = − logP(u|f ) =

∫
|f (x)− u(x)|2

2σ2 dx+λ

∫
|∇u(x)|dx+const.

A systematic derivation of probability distributions on
infinite-dimensional spaces requires a more formal derivation
(introduction of measures etc). This is beyond our scope.
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Conclusion on MAP Estimation

By invoking a Bayesian MAP rationale, one can formulate lots
of computer vision problem under the form

min
u

D(u, f ) + λR(u)

with an “automated” method for selecting D, R and λ.
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A Few Classic Fidelity Terms
Gaussian noise is fine for modeling “small” perturbations:

P(f |u) ∝ exp
(
−
∫
|f (x)− u(x)|2

2σ2 dx
)

⇒ min
u

∫
|f (x)− u(x)|2 dx︸ ︷︷ ︸

:=‖f−u‖2
2

+λR(u)
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A Few Classic Fidelity Terms
Laplace noise is fine for modeling “impulsive” perturbations:

P(f |u) ∝ exp
(
−
∫
|f (x)− u(x)|

σ
dx
)

⇒ min
u

∫
|f (x)− u(x)| dx︸ ︷︷ ︸
:=‖f−u‖1

+λR(u)



Variational Image
Restoration

Dr. Yvain QUÉAU

Inverse Problems and
Image Restoration

Image Denoising

Image Deblurring

Inverse Problems and
Bayesian Inference

Motion Blur and
Defocus Blur

Video Super
Resolution

Inpainting

Numerical Solving

Conclusions

updated 2017-11-23 19/51

A Few Classic Fidelity Terms
Cauchy noise is even better for modeling “impulsive”
perturbations:

P(f |u) ∝
∫

1
|f (x)− u(x)|2 + σ2 dx

⇒ min
u

∫
log
(
|f (x)− u(x)|2 + σ2) dx + λR(u)
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A Few Classic Regularizers
Sobolev regularization tends to favor smoothness:

P(u) ∝ exp
(
−λ
∫
|∇u(x)|2dx

)
⇒ min

u
D(u, f ) +

∫
‖∇u(x)‖2 dx
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A Few Classic Regularizers
Total variation (TV) tends to favor piecewise constantness:

P(u) ∝ exp
(
−λ
∫
|∇u(x)|dx

)
⇒ min

u
D(u, f ) +

∫
‖∇u(x)‖ dx
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Why TV Preserves Edges and Sobolev does not

Consider the following step function:

u(x) =


0 if x 6 h
a

2h x + a
2 if x ∈ [−h,h]

a if x > h

Now remark that ∫
R
|u′(x)|pdx = (2h)1−pap

tends to infinity for h→ 0 if p > 1 !!! Means: Sobolev

regularization will never ever allow an edge.

But no problem if p = 1 (TV) !
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Image Restoration: Motion Blur
Assume the camera lens opens instantly and remains open
during the time interval [0,T ] in which the camera moves with
constant velocity V in x-direction. The observed brightness is

g(x , y) =
1
T

∫ T

0
f (x − Vt , y)dt .

Inserting x ′ ≡ Vt , we get a convolution

g(x , y) =
1

VT

VT∫
0

f (x−x ′, y)dx ′ =

∞∫
−∞

f (x−x ′, y−y ′)h(x ′, y ′)dx ′dy ′,

with the anisotropic blur kernel:

h(x ′, y ′) =
1

VT
· δ(y ′) · χ[0,VT ](x ′),

and

χ[a,b](x ′) =

{
1, if x ′ ∈ [a,b]
0, else (box filter)
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Example: Motion Blur

Original Motion-blurred

(Author: D. Cremers)
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Image Restoration: Defocus Blur

Defocus blur arises with real (in particular thick) lenses
because structures are increasingly blurred, the further they
are from the focal plane.

Depending on the focal setting and the depth of the scene, we
will therefore observe a space-varying blur which allows us to
infer the local depth (shape from focus / defocus).

Scene captured with three different focal settings.

(Source: Favaro, Soatto, PAMI 2005)
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Image Restoration: Defocus Blur

images with different focus images with different focus

depth reconstruction depth reconstruction

(Favaro et al., IEEE T. on PAMI 2008)
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Image Restoration: Super Resolution

Super resolution from video exploits the redundancy available
in multiple images. We assume that each image fi is a blurred
and downsampled version of a high-resolution scene.

We can try to recover a high-resolution image u with a
variational approach of the form:

min
u

n∑
i=1

∫
|A(u ◦ wi )− fi |dx + λ

∫
|∇u|dx .

The deformation field wi : Ω→ Ω models the warping from the
original scene into image i , and A is a linear operator modeling
the blurring and downsampling. Again, the variational approach
aims at inverting an image formation process of the form:

fi = A(u ◦ wi ) + η,

which states that the observed image is obtained from the
“true” image by nonrigid deformation, blurring and
downsampling plus additive Poisson-distributed noise η.
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Image Restoration: Super Resolution

One of several input images Superresolution estimate

(Schoenemann, Cremers, IEEE T. on Image Processing 2012)
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Image Restoration: Inpainting
Image inpainting is a particular image restoration technique
which explicitly handles (interpolate and / or extrapolate)
missing data.

Corrupted Denoised

Assume f : Ω ⊂ R2 → R a graylevel image, but only ΩD ⊂ Ω is
“reliable”. Then, denoising (or deblurring, etc.) should not use
the f -data over Ω\ΩD. The standard TV-inpainting model is
then:

min
u

∫
ΩD

|u − f |2 dx + λ

∫
Ω

|∇u|dx .
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Limits of TV-inpainting

TV-inpainting is a very naive interpolation technique which
does not transport texture...
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Variations around the Inpainting Model

• Compression by Diffusion

• Poisson Image Editing [Perez et al, SIGGRAPH 2003]

How would you do that ?
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Gradient Descent for the L2-TV (ROF) Model
Consider the generic L2-TV (ROF) restoration problem:

min
u: Ω⊂R2→R

∫
Ω

1
2

((Ku)(x)− f (x))2 + λ|∇u(x)| dx

(denoising: K = id; deblurring: K = Gaussian kernel,
super-resolution: K = zoom kernel, etc.)

Its first-order optimality condition is the Euler-Lagrange
equation

K> (Ku − f )− λ∇ ·
(
∇u
|∇u|

)
over Ω,

with Neumann or Dirichlet boundary conditions on ∂Ω.

Starting from u(x ,0) = f (x) ∀x ∈ Ω, optimization can be
carried out by gradient descent:

∂tu(x , t) = −(K>Ku)(x , t) + (K>f )(x) + λ∇x ·
(
∇xu(x , t)
|∇xu(x , t)|

)
,

∀(x , t) ∈ Ω× [0,+∞).
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Main Issue in Gradient Descent for the L2-TV (ROF) Model

When implementing the gradient descent

∂tu(x , t) = −(K>Ku)(x , t) + (K>f )(x) + λ∇x ·
(
∇xu(x , t)
|∇xu(x , t)|

)
,

∀(x , t) ∈ Ω× [0,+∞),

one must be careful to avoid division by zero which occurs due
to the factor |∇xu(x , t)| (infinite diffusivity if there is no edge).

In practice, we need to smooth a bit this term:

1
|∇xu(x , t)|

≈ 1
|∇xu(x , t)|ε

:=
1√

|∇xu(x , t)|2 + ε

or
1

|∇xu(x , t)|
≈ 1
|∇xu(x , t)|µ

:=
1

max{µ, |∇xu(x , t)|}

with ε, µ > 0, small (e.g. 10−3)
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The Choice of the Smoothing Matters
Example with ε = µ = 10−3
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The Choice of the Smoothing Matters
Example with ε = µ = 10−2
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The Choice of the Smoothing Matters
Example with ε = µ = 10−1
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What we are Actually Doing...

The first “smoothed” gradient descent

∂tu(x , t) = −(K>Ku)(x , t) + (K>f )(x) + λ∇x ·
(
∇xu(x , t)
|∇xu(x , t)|ε

)
,

∀(x , t) ∈ Ω× [0,+∞),

is exactly the gradient descent for the “smoothed” functional

min
u: Ω⊂R2→R

∫
Ω

1
2

((Ku)(x)− f (x))2 + λ|∇xu(x)|ε dx .
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What we are Actually Doing...

The second “smoothed” gradient descent

∂tu(x , t) = −(K>Ku)(x , t) + (K>f )(x) + λ∇x ·
(
∇xu(x , t)
|∇xu(x , t)|µ

)
,

∀(x , t) ∈ Ω× [0,+∞),

is exactly the gradient descent for the “smoothed” functional

min
u: Ω⊂R2→R

∫
Ω

1
2

((Ku)(x)− f (x))2 + λ
|∇u(x)|2

|∇xu(x)|µ
dx .
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What we are Actually Doing...
The Moreau-Yosida regularization of a function f (x) is defined
as follows:

Mµf (x) = inf
y

{
f (y) +

1
2µ
‖x − y‖2

}

Under mild conditions, f and its Moreau envelope have the
same minimizers. But minimizing the Moreau envelope is often
much easier (it is smooth, even if f is not). → we often rather
tackle the Moreau envelope if the optimization problem is
nonsmooth. This is the basic idea of proximal optimization.

For the absolute value f (x) = |x |, we get (up to constants)
Mµf (x) = x2

|x|µ (i.e., the Huber loss), hence minimizing the
smoothed functional

min
u: Ω⊂R2→R

∫
Ω

1
2

((Ku)(x)− f (x))2 + λ
|∇u(x)|2

|∇xu(x)|µ
dx

is very closely related to the original (non-smoothed)
variational problem (not just a computer scientist hack...).
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Explicit Time Gradient Descent

We can now discretize the gradient descent equation

∂tu(x , t) = −(K>Ku)(x , t) + (K>f )(x) + λ∇x ·
(
∇xu(x , t)
|∇xu(x , t)|µ

)
,

∀(x , t) ∈ Ω× [0,+∞),

wrt time t using forward finite differences i.e.,

∂tu(x , t) =
u(x , t + 1)− u(x , t)

δt
,

with some fixed stepsize δt > 0.

This yields the following algorithm:

u(0) = f

u(t+1) = u(t) − δt

(
K>

(
Ku(t) − f

)
− λ∇ · ∇u(t)

|∇u(t)|µ

)
, t ∈ {1,2, . . . }

This works, but descent has to be slow (low δt )
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Lagged Diffusivity (Implicit Time Gradient Descent)

To make things more stable, we usually prefer to freeze only
the diffusivity during descent, i.e.:

u(0) = f

u(t+1) = u(t) − δt

(
K>
(

Ku(t+1) − f
)
− λ∇ · ∇u(t+1)

|∇u(t)|µ

)
, t ∈ {1,2, . . . },

which requires a linear system to be solved at each update:(
id + δtK>K − δtλ∇ ·

(
1

|∇u(t)|µ
∇
))

u(t+1) = u(t) + δtK>f

Typically much larger stepsizes are allowed, which makes
things way faster and removes the need for tedious tuning (or
linesearch).
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The Choice of the Stepsize Matters
Example with δt = 0.02
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The Choice of the Stepsize Matters
Example with δt = 0.2
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The Choice of the Stepsize Matters
Example with δt = 2
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Gradient Descent Process for the Inpainting + Denoising
Task
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Recap

What we have seen so far:
• Linear and nonlinear filtering for image processing (Ch. 1)
• Formalization using diffusion equations (Ch. 2)
• Optimization in infinite dimension (variational calculus)

yields diffusion equations as first-order conditions (Ch. 3)
• Application to inverse problems in imaging (Ch. 4)

• Denoising
• Deblurring
• Super-resolution
• Inpainting

Next week: basics of image segmentation (Ch. 5)

Attention

No class on Thursday 30 Nov.: we will have a two-hours
session on Thursday 7 Dec.
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