Variational Methods for Computer Vision: Solution Sheet 1

Exercise: 24 October 2017

Part I: Theory

1. Refresher: Multivariate analysis.
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(d) The solutions for the two functions from 1c are:
i. curl f =2,
ii. curl f =0.

Proof for the curl of the gradient:
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(Symmetry of partial derivatives)

(e) i. Using the coordinate transformation from 1(b)i with det J = r, the area of a disk Dp

of radius R can be calculated as
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Using a parametrization like in 1(b)ii, vz : [0, 27] — R2,vgr(t) = (Rcos(t), Rsin(t))
with ||7%|l2 = R, the circumference of a circle with radius R can be calculated as
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(f) First calculate the left-hand side of the divergence theorem:
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For the right-hand side, first calculate the normal vector. The points on the boundary 0D g
can be characterized by the zero set of g(x,y) = 22 + y?> — R?. Calculating the gradient
Vg = (2x,2y)" will give the direction of the normal n, and normalizing the gradient
yields n = (22 +y?)~Y%(z,y)" = (z,y)" /R. Now the integral becomes
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which is equal to the left-hand side.

2. (a) i. Associativity:
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Remark: The translation invariance step can be seen as a special case of
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in the following way:
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ii. Commutativity:
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/g F(u— ()| det J,, | da

/fu—a: x)dz
/g (u—x)dx

=: (g * f)(u),

with @y (z) = v —z, |det J,, | = 1, pu(R) = R.
iii. Distributivity:
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(b) We start with the definition of the Fourier transform:
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Introducing the substitution z = = — y, dz = dx we arrive at
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As the Fourier transform and its inverse can be implemented to run in O(nlogn) time,
convolutions can be computed efficiently by exploiting this property:

frg=FHF{f} Flg}}
(c) Let us consider the difference quotient
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Now taking the limit ¢ — 0 we have
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Remark: In order to interchange integration and limit, one needs some additional con-
ditions to hold (see Lebesgue’s dominated convergence theorem). The theorem requires

that

F(y) = fp 280 e )

convergences pointwise to a function F(y) — F'(y), and F} is dominated by an integrable
function F' in the sense

The remaining equality follows from the above and commutativity of convolution:
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Remark: To see the following equality
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consider the function g(z) = g(z — y). We differentiate using the chain rule as
g(x) =g -y),

which we use to arrive at
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