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Exercise: November 14, 2017

Part I: Theory

1. (a) Suppose x∗ is a local but not a global minimizer. Then there exists a z ∈ Rn with f(z) <
f(x∗). Consider the line segment

xλ = λz + (1− λ)x∗, λ ∈ (0, 1).

By convexity we have:

f(xλ) = f(λz+(1−λ)x∗) ≤ λf(z)+(1−λ)f(x∗) < λf(x∗)+(1−λ)f(x∗) = f(x∗).

⇒ Any neighbourhood of x∗ contains a point xλ with f(xλ) < f(x∗), which is a contra-
diction to the assumption.

(b) Assume that x∗ is a stationary point but not a global minimizer. Then there is a z ∈ Rn
with f(z) < f(x∗), and

〈∇f(x∗), z − x∗〉 = lim
ε→0

1

ε
(f(x∗ + ε(z − x∗))− f(x∗))

≤ lim
ε→0

1

ε
(εf(z) + (1− ε)f(x∗)− f(x∗))

= f(z)− f(x∗) < 0.

Thus 〈∇f(x∗), z − x∗〉 6= 0⇒∇f(x∗) 6= 0⇒ x∗ is not a stationary point.

2. f convex⇒ (epi f) convex:

Take arbitrary (u, a), (v, b) ∈ epi f . Then

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v) ≤ λa+ (1− λ)b .

Thus (λu+ (1− λ)v, λa+ (1− λ)b) = λ(u, a) + (1− λ)(v, b) ∈ epi f .

(epi f) convex⇒ f convex:

Take arbitrary x, y ∈ Rn and let a := f(x), b := f(y). Then (x, a), (y, b) ∈ epi f . Since epi f
is convex:

(λx+ (1− λ)y, λa+ (1− λ)b) ∈ epi f , i.e.

f(λx+ (1− λ)y) ≤ λa+ (1− λ)b = λf(x) + (1− λ)f(y).

This is exactly the definition of convexity of f .

3. (a) A direct calculation shows:

h(λx+ (1− λ)y) = αf(λx+ (1− λ)y) + βg(λx+ (1− λ)y)
≤ αλf(x) + α(1− λ)f(y) + βλg(x) + β(1− λ)g(y)
= λ(αf(x) + βg(x)) + (1− λ)(αf(y) + βg(y))

= λh(x) + (1− λ)h(y).
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(b) Since h = max(f, g), we have for each x that h(x) ≥ f(x) and h(x) ≥ g(x). Thus,

λh(x) + (1− λ)h(y) ≥ λf(x) + (1− λ)f(y) ≥ f (λx+ (1− λ)y) and

λh(x) + (1− λ)h(y) ≥ λg(x) + (1− λ)g(y) ≥ g (λx+ (1− λ)y) ,

where the second “≥” sign is due to convexity of f and g, respectively. Now, since both
of these relations hold, we have that

λh(x)+(1−λ)h(y) ≥ max (f (λx+ (1− λ)y) , g (λx+ (1− λ)y)) = h (λ+ (1− λ)y) .

This is exactly the definition of convexity of h.
Alternative: We see that

epi f ∩ epi g = {(x, a) | f(x) ≤ a} ∩ {(x, a) | g(x) ≤ a}
= {(x, a) | max{f(x), g(x)} ≤ a} = epi h

Since the intersection of two convex sets is always convex, epi h is a convex set. This
implies by Ex. 2 that h is also a convex function.
Now we need to proof that the intersection of two convex sets is convex (always λ ∈
(0, 1)):

S1, S2 convex

⇒ (∀x, y ∈ S1 : λx+ (1− λ)y ∈ S1) ∧ (∀x, y ∈ S2 : λx+ (1− λ)y ∈ S2)
⇒
(
x, y ∈ S1 ∧ x, y ∈ S2 ⇒ λx+ (1− λ)y ∈ S1 ∧ λx+ (1− λ)y ∈ S2

)
⇒ ∀x, y ∈ S1 ∩ S2 : λx+ (1− λ)y ∈ S1 ∩ S2
⇒ S1 ∩ S2 convex.

(c) Counterexample: h(x) = min{(x− 1)2, (x+ 1)2} is clearly not convex: take e.g. x = 1,
y = −1 and λ = 1

2 , then

h(λx+ (1− λ)y) = h(0) = 1 > 0 = λh(x) + (1− λ)h(y) .

4.
h′′(x) = f(g(x))′′ =

(
f ′(g(x))g′(x)

)′
= f ′′(g(x))︸ ︷︷ ︸

≥0

g′(x)g′(x)︸ ︷︷ ︸
≥0

+f ′(g(x)) g′′(x)︸ ︷︷ ︸
≥0

Thus h′′(x) ≥ 0 if f ′(g(x)) ≥ 0, so f being a convex non-decreasing function is a sufficient
condition for the convexity of h.
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Part II: Practical Exercises

1. From the lecture, we have the following condition on u:

dEλ
dui

= (ui − fi) + λ
∑

j∈N (i)
j>i

(ui − uj) = 0

⇒ (1 + λni)ui − λ
∑

j∈N (i)
j>i

uj = 0 ,

with ni being the number of neighbours of pixel i. Thus the Gauss-Seidel update step becomes

u
(k+1)
i =

1

1 + λni

fi + λ
∑

j∈N (i)
j>i

u
(k)
j


for the given energy. If we remove the constraint j > i under the sum in the energy Eλ to obtain
a symmetric neighbourhood, the update step is

u
(k+1)
i =

1

1 + λni

fi + λ
∑

j∈N (i)
j<i

u
(k+1)
j + λ

∑
j∈N (i)
j>i

u
(k)
j

 .
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