Variational Methods for Computer Vision: Solution Sheet 3

Exercise: November 14, 2017

Part I: Theory

1. (a) Suppose x^* is a local but not a global minimizer. Then there exists a $z \in \mathbb{R}^n$ with $f(z) < f(x^*)$. Consider the line segment

$$x_{\lambda} = \lambda z + (1 - \lambda)x^*, \lambda \in (0, 1).$$

By convexity we have:

$$f(x_{\lambda}) = f(\lambda z + (1 - \lambda)x^*) \le \lambda f(z) + (1 - \lambda)f(x^*) < \lambda f(x^*) + (1 - \lambda)f(x^*) = f(x^*).$$

 \Rightarrow Any neighbourhood of x^* contains a point x_λ with $f(x_\lambda) < f(x^*)$, which is a contradiction to the assumption.

(b) Assume that x^* is a stationary point but not a global minimizer. Then there is a $z \in \mathbb{R}^n$ with $f(z) < f(x^*)$, and

$$\begin{split} \langle \nabla f(x^*), z - x^* \rangle &= \lim_{\epsilon \to 0} \frac{1}{\varepsilon} (f(x^* + \varepsilon(z - x^*)) - f(x^*)) \\ &\leq \lim_{\epsilon \to 0} \frac{1}{\varepsilon} (\varepsilon f(z) + (1 - \varepsilon) f(x^*) - f(x^*)) \\ &= f(z) - f(x^*) < 0. \end{split}$$

Thus $\langle \nabla f(x^*), z - x^* \rangle \neq 0 \Rightarrow \nabla f(x^*) \neq 0 \Rightarrow x^*$ is not a stationary point.

2. $f \text{ convex} \Rightarrow (\text{epi } f) \text{ convex}$:

Take arbitrary $(u, a), (v, b) \in \text{epi } f$. Then

$$f(\lambda u + (1 - \lambda)v) \le \lambda f(u) + (1 - \lambda)f(v) \le \lambda a + (1 - \lambda)b.$$

Thus $(\lambda u + (1 - \lambda)v, \lambda a + (1 - \lambda)b) = \lambda(u, a) + (1 - \lambda)(v, b) \in \text{epi } f$.

(epi f) convex $\Rightarrow f$ convex:

Take arbitrary $x, y \in \mathbb{R}^n$ and let a := f(x), b := f(y). Then $(x, a), (y, b) \in \text{epi } f$. Since epi f is convex:

$$(\lambda x + (1 - \lambda)y, \lambda a + (1 - \lambda)b) \in \text{epi } f$$
, i.e.

$$f(\lambda x + (1 - \lambda)y) \le \lambda a + (1 - \lambda)b = \lambda f(x) + (1 - \lambda)f(y).$$

This is exactly the definition of convexity of f.

3. (a) A direct calculation shows:

$$h(\lambda x + (1 - \lambda)y) = \alpha f(\lambda x + (1 - \lambda)y) + \beta g(\lambda x + (1 - \lambda)y)$$

$$\leq \alpha \lambda f(x) + \alpha (1 - \lambda)f(y) + \beta \lambda g(x) + \beta (1 - \lambda)g(y)$$

$$= \lambda (\alpha f(x) + \beta g(x)) + (1 - \lambda)(\alpha f(y) + \beta g(y))$$

$$= \lambda h(x) + (1 - \lambda)h(y).$$

(b) Since $h = \max(f, g)$, we have for each x that $h(x) \ge f(x)$ and $h(x) \ge g(x)$. Thus,

$$\lambda h(x) + (1-\lambda)h(y) \ge \lambda f(x) + (1-\lambda)f(y) \ge f\left(\lambda x + (1-\lambda)y\right) \quad \text{and} \quad \lambda h(x) + (1-\lambda)h(y) \ge \lambda g(x) + (1-\lambda)g(y) \ge g\left(\lambda x + (1-\lambda)y\right) \;,$$

where the second " \geq " sign is due to convexity of f and g, respectively. Now, since both of these relations hold, we have that

$$\lambda h(x) + (1-\lambda)h(y) \ge \max\left(f\left(\lambda x + (1-\lambda)y\right), g\left(\lambda x + (1-\lambda)y\right)\right) = h\left(\lambda + (1-\lambda)y\right).$$

This is exactly the definition of convexity of h.

Alternative: We see that

epi
$$f \cap$$
 epi $g = \{(x, a) \mid f(x) \le a\} \cap \{(x, a) \mid g(x) \le a\}$
= $\{(x, a) \mid \max\{f(x), g(x)\} \le a\}$ = epi h

Since the intersection of two convex sets is always convex, epi h is a convex set. This implies by Ex. 2 that h is also a convex function.

Now we need to proof that the intersection of two convex sets is convex (always $\lambda \in$ (0,1):

$$S_1, S_2$$
 convex
 $\Rightarrow (\forall x, y \in S_1 : \lambda x + (1 - \lambda)y \in S_1) \land (\forall x, y \in S_2 : \lambda x + (1 - \lambda)y \in S_2)$
 $\Rightarrow (x, y \in S_1 \land x, y \in S_2 \Rightarrow \lambda x + (1 - \lambda)y \in S_1 \land \lambda x + (1 - \lambda)y \in S_2)$

$$\Rightarrow (x, y \in S_1 \land x, y \in S_2 \Rightarrow \lambda x + (1 - \lambda)y \in S_1 \land \lambda x + (1 - \lambda)y \in S_2)$$

$$\Rightarrow \forall x, y \in S_1 \cap S_2 \colon \lambda x + (1 - \lambda)y \in S_1 \cap S_2$$

 $\Rightarrow S_1 \cap S_2$ convex.

(c) Counterexample: $h(x) = \min\{(x-1)^2, (x+1)^2\}$ is clearly not convex: take e.g. x=1, y=-1 and $\lambda=\frac{1}{2}$, then

$$h(\lambda x + (1 - \lambda)y) = h(0) = 1 > 0 = \lambda h(x) + (1 - \lambda)h(y)$$
.

4.

$$h''(x) = f(g(x))'' = \left(f'(g(x))g'(x)\right)'$$
$$= \underbrace{f''(g(x))}_{>0} \underbrace{g'(x)g'(x)}_{>0} + f'(g(x)) \underbrace{g''(x)}_{>0}$$

Thus $h''(x) \ge 0$ if $f'(g(x)) \ge 0$, so f being a convex non-decreasing function is a sufficient condition for the convexity of h.

Part II: Practical Exercises

1. From the lecture, we have the following condition on u:

$$\frac{\mathrm{d}E_{\lambda}}{\mathrm{d}u_i} = (u_i - f_i) + \lambda \sum_{\substack{j \in \mathcal{N}(i) \\ j > i}} (u_i - u_j) = 0$$

$$\Rightarrow (1 + \lambda n_i) u_i - \lambda \sum_{\substack{j \in \mathcal{N}(i) \\ i > i}} u_j = f_i ,$$

with n_i being the number of neighbours of pixel i. Thus the Gauss-Seidel update step becomes

$$u_i^{(k+1)} = \frac{1}{1 + \lambda n_i} \left(f_i + \lambda \sum_{\substack{j \in \mathcal{N}(i) \\ j > i}} u_j^{(k)} \right)$$

for the given energy. If we remove the constraint j > i under the sum in the energy E_{λ} to obtain a symmetric neighbourhood, the update step is

$$u_i^{(k+1)} = \frac{1}{1 + \lambda n_i} \left(f_i + \lambda \sum_{\substack{j \in \mathcal{N}(i) \\ j < i}} u_j^{(k+1)} + \lambda \sum_{\substack{j \in \mathcal{N}(i) \\ j > i}} u_j^{(k)} \right).$$