Variational Methods for Computer Vision: Solution Sheet 8

Exercise: December 19, 2017

Part I: Theory

1. Recall from the lecture, that the Euler-Lagrange equation for the two-region Mumford-Shah functional for a curve $C:[0,1] \rightarrow \Omega \subset \mathbb{R}^{2}$ and image $I: \Omega \rightarrow \mathbb{R}$ is given by

$$
\begin{equation*}
\frac{\mathrm{d} E}{\mathrm{~d} C}=\left(\left(I-u_{\mathrm{int}}\right)^{2}-\left(I-u_{\mathrm{ext}}\right)^{2}+\nu \kappa\right) n_{C} . \tag{1}
\end{equation*}
$$

Here, $u_{\text {int }}$ and $u_{\text {ext }}$ are the average intensities inside and outside the curve C, i.e.,

$$
\begin{equation*}
u_{\mathrm{int}}=\frac{\int_{\operatorname{int}(C)} I(x) \mathrm{d} x}{\int_{\text {int }(C)} \mathrm{d} x}, u_{\mathrm{ext}}=\frac{\int_{\operatorname{ext}(C)} I(x) \mathrm{d} x}{\int_{\operatorname{ext}(C)} \mathrm{d} x} . \tag{2}
\end{equation*}
$$

We will consider the curve evolution

$$
\begin{equation*}
\frac{\partial C}{\partial t}=-\frac{\mathrm{d} E}{\mathrm{~d} C}=\left(-\left(I-u_{\mathrm{int}}\right)^{2}+\left(I-u_{\mathrm{ext}}\right)^{2}-\nu \kappa\right) n_{C} . \tag{3}
\end{equation*}
$$

Intuitively, we evolve the curve along the normal vector n_{C} depending on the sign of the term in the brackets.
(a) The curvature κ of a circle with radius r is $\kappa=\frac{1}{r}$. We can use this fact in calculating the Euler-Lagrange equations for the 2 different cases.

Case $r>1$:

$$
u_{\mathrm{ext}}=0, \quad u_{\mathrm{int}}=\frac{\pi}{\pi r^{2}}=\frac{1}{r^{2}} .
$$

This leads to following inner term:

$$
\left(I-u_{\mathrm{ext}}\right)^{2}-\left(I-u_{\mathrm{int}}\right)^{2}-\nu \kappa=(0-0)^{2}-\left(0-\frac{1}{r^{2}}\right)^{2}-\frac{\nu}{r}=-\frac{1}{r^{4}}-\frac{\nu}{r} .
$$

Case $r \leq 1$:

$$
u_{\mathrm{ext}}=\frac{\pi-\pi r^{2}}{100-\pi r^{2}}, \quad u_{\mathrm{int}}=1
$$

A short computation shows:

$$
\begin{aligned}
\left(I-u_{\mathrm{ext}}\right)^{2}-\left(I-u_{\mathrm{int}}\right)^{2}-\nu \kappa & =\left(1-\frac{\pi-\pi r^{2}}{100-\pi r^{2}}\right)^{2}-0-\frac{\nu}{r} \\
& =\left(\frac{100-\pi}{100-\pi r^{2}}\right)^{2}-\frac{\nu}{r}
\end{aligned}
$$

(b) We see that the limits differ,

$$
\begin{aligned}
& \lim _{r \searrow 1}-\frac{1}{r^{4}}-\frac{\nu}{r}=-1-\nu \\
& \lim _{r \nearrow 1}-\frac{100-\pi}{100-\pi r^{2}}-\frac{\nu}{r}=\frac{100-\pi}{100-\pi}-\nu=1-\nu
\end{aligned}
$$

hence, the functional derivative at $r=1$ is not continuous.
This shows that the original energy $E(C)$ is not differentiable, which can lead to convergence problems when using gradient descent-type algorithms as they technically require differentiability of the energy.
$\nu \leq 1$ is a good choice because it ensures that the curve evolves in the right direction for both cases $r>1$ and $r \leq 1 . \nu=0$ can be considered optimal in some sense, because that minimizes the difference in the magnitude of the gradient direction for the two cases $r>1$ and $r \leq 1$ (they are both 1).
2. Let us first consider the energy as a functional of u :

$$
E(u)=\int_{\Omega} \mathcal{L}(u, \nabla u) \mathrm{d} x
$$

Using the result from the lecture for energies of this form, the optimality condition is

$$
\begin{array}{ll}
\frac{\partial \mathcal{L}}{\partial u}-\operatorname{div} \frac{\partial \mathcal{L}}{\partial \nabla u}=2(u-I)-2 \lambda \operatorname{div}\left(w^{2} \nabla u\right)=0 & \text { in } \Omega \\
\left\langle\frac{\partial \mathcal{L}}{\partial \nabla u}, n\right\rangle=\left\langle 2 \lambda w^{2} \nabla u, n\right\rangle=2 \lambda w^{2}\langle\nabla u, n\rangle=0 & \text { on } \partial \Omega
\end{array}
$$

As usual n is the normal on the boundary. Notice that the energy is quadratic in both u and ∇u, which means that we have a linear Euler-Lagrange equation. For image denoising von Neumann boundary conditions are appropriate, i.e. $\langle\nabla u, n\rangle=0$. This implies that the boundary term of the Euler-Lagrange equation is fulfilled.
Next, we consider the energy as a functional of w :

$$
E(w)=\int_{\Omega} \mathcal{L}(w, \nabla w) \mathrm{d} x
$$

and compute the optimiality condition analogously as

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w}-\operatorname{div} \frac{\partial \mathcal{L}}{\partial \nabla w}=2 \lambda|\nabla u|^{2} w+\frac{\nu}{2 \epsilon}(w-1)-2 \nu \epsilon \Delta w=0 & \text { in } \Omega \\
\left\langle\frac{\partial \mathcal{L}}{\partial \nabla u}, n\right\rangle=\langle 2 \nu \epsilon \nabla w, n\rangle=2 \nu \epsilon\langle\nabla w, n\rangle=0 & \text { on } \partial \Omega
\end{aligned}
$$

Again, this equation is linear in w. The boundary term is fulfilled with von Neumann boundary conditions $(\langle\nabla w, n\rangle=0)$ and this choice also seems appropriate for the application (imagine the border indicater function w to extend with constant value at the border in normal direction).
In the implementation we alternatingly optimize u and w. In each step we can directly compute the optimal u and w by solving a linear equation system.

