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Literature on Variational Methods

P. Kornprobst, G. Aubert, “Mathematical Problems in Image
Processing, Partial Differential Equations and the Calculus of
Variations”, Springer 2006.

T. Chan, J. Shen, “Image Processing and Analysis: Variational,
PDE, Wavelet, and Stochastic Methods”, SIAM 2005.

J.-M. Morel, S. Solimini, “Variational Methods in Image
Segmentation”, Birkhäuser 1995.

K. Bredies, D. Lorenz, “Mathematische Bildverarbeitung:
Einführung in Grundlagen und moderne Theorie”, Vieweg &
Teubner 2011.
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Continuous versus Discrete

Digital images are discrete, both in space and in their values.
Nevertheless, one can represent and analyze them in a
continuous setting.

continuous discrete
(sampling & quantization)
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Continuous versus Discrete

• There are different levels of discretization:
• Discretization in color or brightness space (=quantization)
• Discretization in (physical) space
• Discretization in time (for videos)

• Continuous representation: f : (Ω ⊂ Rn)→ Rd

• n = 2: 2-dim. images,
n = 3 : volumetric images or 2-dim. videos,
n = 4: volume + time,...

• d = 1: brightness images,
d = 3: color images,
d > 1: multispectral images

• Discretization:

f (x , y) −→


f (1,1) f (1,2) · · · f (1,N)
f (2,1) f (2,2) · · · f (2,N)

...
...

. . .
...

f (M,1) f (M,2) · · · f (M,N)
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Continuous versus Discrete

• Advantages of discrete representations:

• Digital images are discrete, and their processing in a
computer will ultimately require a discretization.

• No numerical approximations in modeling the transition from
discrete to continuous.

• For various problems there exist efficient algorithms from
discrete optimization.

• Advantages of continuous representations:

• The world observed through the camera is continuous.
• There exists abundant mathematical theory for the

treatment of continuous functions (functional analysis,
differential geometry, partial differential equations, group
theory,...).

• Certain properties (rotational invariance) are easier to
model because artefacts of discretization can be ignored.

• Continuous models correspond to the limit of infinitely fine
discretization.
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Spatial Subsampling

Representation of an image with fewer and fewer pixels
(source: Gonzalez & Woods)
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Spatial Subsampling

Subsampled from 10242 to 322 and enlarged
(Source: Gonzalez & Woods)
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Brightness Quantization

256 levels 16 levels

4 levels 2 levels
(Source: Gonzalez & Woods)

“typical” images: 256× 256 pixels with 256 brightness values
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Interpolation

lower row: Bilinear interpolation of the upper row
(Source: Gonzalez & Woods)

Bilinear interpolation: f̂ (x , y) = ax + by + cxy + d with
coefficients a,b, c,d determined by fitting to brightness values
of 4 neighboring pixels.
Alternatives: nearest neighbor or bi-cubic interpolation,...
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Spatial Domain Filtering

• Filtering of an image in the spatial domain can be
represented by an operator T :

g(x , y) = (Tf )(x , y),

where f denotes the input image and g the processed
image.

• Typically T acts on a certain spatial neighborhood.

• The simplest form of T is an operator which simply models
a local brightness transformation:

s = T (r),

where r is the input brightness at a certain location and s
the respective brightness in the transformed image.
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The Brightness Transform

• Typically the goal of brightness transforms is to transfer
the brightness values into a range that facilitates it for
humans to see the relevant structures, i.e. the
semantically important brighness transitions should be in a
range where retinal receptors are particularly sensitive.

• In most cases one considers monotonically nondecreasing
brightness transforms T (r), i.e. transforms which preserve
the ordering:

r1 ≤ r2 ⇒ T (r1) ≤ T (r2)

In the case that r1 < r2 ⇒ T (r1) < T (r2) these transforms
are called strictly monotonous.

• Strictly monotonous brightness transforms are invertible,
i.e. the orginal image data can be recovered from the
filtered image.
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Contrast Enhancement

• Two important examples of brightness transforms are
contrast stretching (Kontrastverstärkung) and thresholding
(Schwellwertbildung):

contrast stretching thresholding

(Source: Gonzalez & Woods)

• Thresholding can be seen as a limiting case of contrast
stretching. It provides a binary image as output which is
often useful for further processing.
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Log- and Powerlaw-Transform

• Two further examples of brightness transforms are the
logarithm transform: s = c log(1 + r), and the powerlaw
transform: s = crγ .

Powerlaw transform s = crγ

(Source: Gonzalez & Woods)

• Nonlinear brightening (γ < 1) or darkening (γ > 1).

• The correction of brightness changes (due to image
acquisition and image display) with an inverse powerlaw
transform is called gamma correction.
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Example: Contrast Enhancement

Input γ = 0.6 γ = 0.4 γ = 0.3

(Source: Gonzalez & Woods)

Through the powerlaw transform certain structures in the input
image become more visible.
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Gray Level Slicing

What effects do the above transforms have?
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Linear Filters
• The term filtering is derived from frequency space

methods where a spatial smoothing of the brightness
values corresponds to a signal transform where
high-frequency components are filtered out.

• An operator T is called linear if the following properties
hold:

1 T (f + g) = T (f ) + T (g) ∀ images f , g.
2 T (αf ) = αT (f ) ∀ images f , scalars α.

• For linear operators, the output brightness values are
linear combinations of the input brightness values. Among
the linear transformations is the convolution (Faltung):

g(x , y) =

∫
w(x ′, y ′) f (x − x ′, y − y ′) dx ′ dy ′.

In a spatially discrete setting, this corresponds to a
weighted sum:

g(i , j) =
∑
m,n

w(m,n)f (i −m, j − n).
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Linear Filters

• In practice this summation extends over a certain
neighborhood, often called window. The matrix of weights
w(m,n) is called a mask.

g(i , j) =
∑
m,n

w(m,n)f (i −m, j − n)

• For example, the 3× 3 mask:

w(1,1) w(0,1) w(-1,1)

w(1,0) w(0,0) w(-1,0)

w(1,-1) w(0,-1) w(-1,-1)

• In the continuous representation the weight function
w(x ′, y ′) is called convolution kernel (Faltungskern):

g(x , y) = (w ∗ f ) (x , y) ≡
∫

w(x ′, y ′) f (x−x ′, y−y ′) dx ′ dy ′
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Gaussian Convolution
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Smoothing Filters

• Smoothing or low-pass filtering typically averages the
brightness values in a certain spatial neighborhood.

• The most common example of smoothing kernel is the
Gaussian kernel. It induces a weighted average of
brightness values on the scale determined by the standard
deviation σ:

w(x , y) =
1

2πσ2 exp

(
−x2 + y2

2σ2

)
• A multitude of alternative convolution kernels (or filter

masks) is conceivable, for example box filters which are
constant within the window:

w(i , j) = 1
9

1 1 1
1 1 1
1 1 1

• For pixels at the image boundary, the weight mask must
be adapted appropriately.
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The Median Filter

• A specific class of nonlinear filters are the order statistics
filters. For these filters, the brightness of the filtered image
at a given pixel depends on the order of brightness values
in a certain neighborhood.

• The best known example of an order statistics filter is the
median filter. For this filter, each pixel is assigned the
median value of brightness values in its neighborhood.

• Example: The median of the brightness values
{1,2,2,3,4,5,20} is 3, i.e. the central value after sorting.

• Median filters are particularly useful for reduction of
impulse noise, also called salt-and-pepper noise, i.e.
noise where some brightness values are randomly
replaced by black or white values.

• Median filters typically induce less blurring than Gaussian
or other linear smoothing filters.
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Median versus Gauss

noisy input Gauss filtered median filtered

In contrast to the Gaussian filter (center), the median filter
better removes noise without blurring structures. Nonlinear
methods are often more general and more powerful than linear
approaches.
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Derivative Filters
• Derivative filters capture the spatial variations of

brightness. In particular, they provide information about
edges or corners in an image. In a simplified world of
black objects on white ground, these brightness edges
correspond to object boundaries.

• Mathematically the partial derivatives of the function
f (x , y) with respect to x is defined as:

∂f (x , y)

∂x
= lim
ε→0

f (x + ε, y)− f (x , y)

ε

• The continuous derivative can be approximated discretely
by (symmetric) finite differences:

∂x f (x , y) ≡ fx (x , y) ≡ ∂f (x , y)

∂x
≈ f (x + 1, y)− f (x − 1, y)

2
• Alternatives:

∂x f (x , y) ≈ f (x + 1, y)− f (x , y) (forward difference)

∂x f (x , y) ≈ f (x , y)− f (x − 1, y) (backward difference).
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Example: 1D Brightness Profile

Input 1D brightness profile
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Example of the First Derivative

Input image Input with noise

x-derivative derivative of noisy image
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Noise Sensitivity of the Derivative

Input f derivative fx fx along horizontal

Observation:
• Vertical edges can be determined as maxima of the norm

of the x-derivative.
• Horizontal edges can be determined as maxima of the

norm of the y -derivative.
• This approach only allows to selectively determine

horizontal or vertical edges.
• It is very sensitive to noise.
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The Image Gradient ∇f (x , y)

• The gradient of a function f (x , y) is the vector:

∇f (x , y) =

(
∂x f
∂y f

)
≡
(

fx
fy

)
• The gradient norm (often also called “gradient”) is given by

the Euclidean length of the gradient vector:

|∇f (x , y)| =

∣∣∣∣(fx
fy

)∣∣∣∣ =
√

(fx )2 + (fy )2

• The gradient norm is a nonlinear operator operator for
detection of edges in arbitrary orientation.

• The gradient norm is rotationally covariant (sometimes
called “rotationally invariant”). This means: The gradient
norm of the rotated image is the same as the rotated
gradient norm of the unrotated image. This implies that the
performance of this operator does not depend on how the
input image is rotated.



Images and Image
Filtering

Prof. Daniel Cremers

Some Literature

Digital Images

Spatial Domain
Filtering

Smoothing Filters

Derivative Filters

updated 2018-10-30 30/38

Example of the Image Gradient

Input image Gradient norm
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The Laplace Operator ∆f (x , y)

• The divergence of a vector v = (v1, v2) is defined as
∇v = ∂xv1 + ∂y v2.

• The Laplace operator ∆ is given by the concatenation of
gradient and divergence:

∆f (x , y) = ∇2f (x , y) =

(
∂x

∂y

)(
fx
fy

)
=
∂2f
∂x2 +

∂2f
∂y2 = fxx + fyy

• The Laplace operator is linear:

∆(α1f (x)+α2g(x)) = α1∆f (x)+α2∆g(x) ∀α1, α2 ∈ R,∀f ,g

• Linearity has several practical advantages. Linearity
implies that it does not matter whether one first sums
images and then processes them or vice versa.
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Example of the Laplace Operator

Input image Laplace operator of the image
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Discretization of Derivatives

There exist different discrete approximations of derivatives. In
the following we shall denote width and height of a single pixel
by hx and hy . Then the x-derivative of a brightness image f at
pixel (i , j) can be approximated as:

1 Symmetric differences:

fx (i , j) ≈ f (i + 1, j)− f (i − 1, j)
2hx

2 Forward differences:

fx (i , j) ≈ f (i + 1, j)− f (i , j)
hx

3 Backward differences:

fx (i , j) ≈ f (i , j)− f (i − 1, j)
hx

How do these masks differ? Which one is better?



Images and Image
Filtering

Prof. Daniel Cremers

Some Literature

Digital Images

Spatial Domain
Filtering

Smoothing Filters

Derivative Filters

updated 2018-10-30 34/38

The Taylor Series Expansion
• The key idea of the Taylor expansion is to approximate a

function in the vicinity of an expansion point by a truncated
power series:

f (x0 + ε) = f (x0) + εf ′(x0) +
ε2

2
f ′′(x0) + O

[
ε3
]

• This expansion is easily derived as follows. Assume that
the function f (x0 + x) can be written as a linear
combination of powers of x :

f (x0 + x) = a0 + a1x + a2x2 + . . . =
∞∑

n=0

anxn

By inserting x = 0 into various derivatives of this
expression, we get:

f (x0) = a0, f ′(x0) = a1, f ′′(x0) = 2a2

and in general:

f (n)(x0) = (n!)an ⇒ an =
f (n)(x0)

n!
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Application to the Brightness Function

Let f (i , j) denote the brightness at pixel (i , j), and hx the width
of a pixel. Then we have:

f (i + 1, j) = f (i , j) + hx fx (i , j) +
h2

x

2
fxx (i , j) + O

[
h3

x
]

Similarly:

f (i − 1, j) = f (i , j)− hx fx (i , j) +
h2

x

2
fxx (i , j) + O

[
h3

x
]

Subtracting both equations leads to:

fx (i , j) =
f (i + 1, j)− f (i − 1, j)

2hx
+ O

[
h2

x
]

Instead, subtracting f (i , j) from the first equation leads to:

fx (i , j) =
f (i + 1, j)− f (i , j)

hx
+ O [hx ]
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Discretization Error

• The difference between an analytical expression and its
discrete representation is called discretization error.

• When discretizing a differential equation, the order of the
discretization error is called order of consistency.

• The symmetric difference discretization is of order 2
because the discretization error is of order h2

x . In contrast,
forward or backward differences lead to a consistency
order 1.

• In the numerical discretization of differential equations
higher orders are typically better because they allow to
faster approximate the continuum with finer discretizations,
i.e. hx → 0.

• Using Taylor expansions of higher order one can further
improve the consistency order, however at the sake of
larger mask size.
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Discretization of the 2nd Derivative

As above, let f (i , j) denote the brightness at pixel (i , j), and hx
the width of each pixel. Then we have:

f (i + 1, j) = f (i , j) + hx fx (i , j) +
h2

x

2
fxx (i , j) +

h3
x

3!
fxxx (i , j) + O

[
h4

x
]

Similarly:

f (i − 1, j) = f (i , j)− hx fx (i , j) +
h2

x

2
fxx (i , j)− h3

x

3!
fxxx (i , j) + O

[
h4

x
]

Summing both equations leads to:

fxx (i , j) =
f (i + 1, j) + f (i − 1, j)− 2f (i , j)

h2
x

+ O
[
h2

x
]

This discretization of the second derivative is of consistency
order 2.
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Discretization of the Laplacian

Two masks showing discretizations of ∆f = fxx + fyy .
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