## Variational Methods for Computer Vision: Exercise Sheet 7

Exercise: December 12, 2018
Prof. Dr. Daniel Cremers, Marvin Eisenberger, Mohammed Brahimi

## Part I: Theory

The following exercises should be solved at home. You do not have to hand in your solutions, however, writing it down will help you present your answer during the tutorials.

1. Let $Q:=[0,1] \times[0,1]$ be a rectangular area and let $V=(u(x, y), v(x, y))$ be a differentiable vector field defined on $Q$.
(a) Prove Green's theorem for $Q$ using the fundamental theorem of calculus, hence show that

$$
\iint_{Q} \operatorname{curl} V \mathrm{dxdy}=\iint_{Q}\left(v_{x}(x, y)-u_{y}(x, y)\right) \mathrm{dxdy}=\oint_{\partial Q} V(s) \mathrm{d} \vec{s}
$$

Assume the boundary curve $\partial Q$ to be oriented counterclockwise.
(b) Let $\Omega \subset \mathbb{R}^{2}$ be an area that can be represented as a disjoint union of a finite number of squares $Q_{1}, \ldots, Q_{n}$. Prove that Green's theorem also holds for $\Omega$.
2. In the lecture the piecewise constant Mumford-Shah functional is written as follows:

$$
E\left(u_{i}, C\right)=\sum_{i=1}^{n} \int_{\Omega_{i}}\left(I(x)-u_{i}\right)^{2} \mathrm{dx}+\nu|C| .
$$

Prove that by merging two regions $\Omega_{1}$ and $\Omega_{2}$ the energy $E$ changes by

$$
\delta E=\frac{A_{1} A_{2}}{A_{1}+A_{2}}\left(u_{1}-u_{2}\right)^{2}-\nu \delta C,
$$

where $A_{i}$ denotes the area of the regions in pixels, $u_{i}$ the respective mean values and $\delta C$ the length of the interface of both regions.

## Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. Finish the practical exercises from the last exercise sheet.
