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Exercise: October 24, 2018
Prof. Dr. Daniel Cremers, Marvin Eisenberger, Mohammed Brahimi

Part I: Theory

1. Refresher: Multivariate analysis.

(a) i. ∇f = (x, y)>

ii. ∇f = (x2 + y2)−1/2(x, y)>

(b) i. J =

(
cos(ϕ) −r sin(ϕ)
sin(ϕ) r cos(ϕ)

)
ii. J =

(
−r sin(t)
r cos(t)

)
(c) i. div f = 0

ii. div f = 2

(d) The solutions for the two functions from 1c are:

i. curl f = 2,
ii. curl f = 0.

Proof for the curl of the gradient:

curl(∇f) = curl

(
∂f
∂x
∂f
∂y

)

=
∂

∂x

∂f

∂y
− ∂

∂y

∂f

∂x

=
∂

∂x

∂f

∂y
− ∂

∂x

∂f

∂y
(Symmetry of partial derivatives)

= 0.

(e) i. Using the coordinate transformation from 1(b)i with det J = r, the area of a disk DR

of radius R can be calculated as∫∫
DR

dx dy =

∫ 2π

0

∫ R

0
r dr dϕ

= 2π

[
1

2
r2
]R
0

= πR2.

ii. Using a parametrization like in 1(b)ii, γR : [0, 2π]→ R2, γR(t) = (R cos(t), R sin(t))>

with ‖γ′R‖2 = R, the circumference of a circle with radius R can be calculated as∫
γR

ds =

∫ 2π

0
R dϕ

= 2πR.



(f) First calculate the left-hand side of the divergence theorem:∫∫
DR

div f dx dy =

∫∫
DR

2 dx dy

= 2πR2. (Using 1(e)i)

For the right-hand side, first calculate the normal vector. The points on the boundary ∂DR

can be characterized by the zero set of g(x, y) = x2 + y2 − R2. Calculating the gradient
∇g = (2x, 2y)> will give the direction of the normal n, and normalizing the gradient
yields n = (x2 + y2)−1/2(x, y)> = (x, y)>/R. Now the integral becomes∫

∂DR

〈f, n〉 ds =

∫
γR

1

R
(x2 + y2) ds

=

∫
γR

R ds

= 2πR2, (Using 1(e)ii)

which is equal to the left-hand side.

Remark: To compute normals on the boundary ∂P of a set P ⊂ Rn, you can use the fact that
the gradient is perpendicular to level sets. Define an implicit representation of P such that the
boundary corresponds to the zero set, i.e. define a differentiable function f : Rn → R such that
P = {x ∈ Rn | f(x) ≤ 0} and ∂P = {x ∈ Rn | f(x) = 0}. The normal at a point x ∈ ∂P
corresponds to ∇f(x)

‖∇f(x)‖ . It is pointing outwards, since f is negative inside and positive outside
of P .

2. (a) i. Associativity:

((f ∗ g) ∗ h)(u) =

∫
R

(f ∗ g)(x)h(u− x) dx

=

∫
R

(∫
R

f(y)g(x− y) dy

)
h(u− x) dx

=

∫
R

∫
R

f(y)g(x− y)h(u− x) dy dx

=

∫
R

∫
R

f(y)g(x− y)h(u− x) dx dy (Fubini’s theorem)

=

∫
R

f(y)

∫
R

g(x− y)h(u− x) dx dy

=

∫
R

f(y)

∫
R

g((x+ y)− y)h(u− (x+ y)) dx dy (Translation invariance)

=

∫
R

f(y)

∫
R

g(x)h(u− y − x) dx dy

=

∫
R

f(y)(g ∗ h)(u− y) dy

= (f ∗ (g ∗ h))(u).

Remark: The translation invariance step can be seen as a special case of∫
S
f(s) ds =

∫
P
f(φ(p))| det Jφ(p)| dp,



in the following way:∫
R

g(x− y) · h(u− x) dx =

∫
R

(g ◦ ϕy1)(x) · (h ◦ ϕu2)(x) dx

=

∫
R

(g ◦ ϕy1)(ϕy(x)) · (h ◦ ϕu2)(ϕy(x)) |det Jϕy |︸ ︷︷ ︸
=1

dx

=

∫
R

g(x)h(u− y − x)dx,

with ϕy(x) = x+ y, ϕy(R) = R, ϕy1(x) = x− y, ϕu2(x) = u− x.
ii. Commutativity:

(f ∗ g)(u) :=

∫
R

f(x) g(u− x) dx

=

∫
R

g(ϕu(x))f(u− ϕu(x))| det Jϕu |dx

=

∫
R

f(u− x) g(x) dx

=

∫
R

g(x)f(u− x) dx

=: (g ∗ f)(u),

with ϕu(x) = u− x, |det Jϕu | = 1, ϕu(R) = R.
iii. Distributivity:

f ∗ (g + h)(u) =

∫
R

f(x)(g + h)(u− x) dx

=

∫
R

f(x)g(u− x) + f(x)h(u− x) dx

=

∫
R

f(x)g(u− x) dx+

∫
R

f(x)h(u− x) dx

= (f ∗ g + f ∗ h)(u).

(b) We start with the definition of the Fourier transform:

F{f ∗ g}(ν) =

∫
R

(∫
R

f(y)g(x− y) dy

)
e−2πixν dx

=

∫
R

f(y)

(∫
R

g(x− y)e−2πixν dx

)
dy.

Introducing the substitution z = x− y, dz = dx we arrive at∫
R

f(y)

(∫
R

g(x− y)e−2πixν dx

)
dy =

∫
R

f(y)

(∫
R

g(z)e−2πi(z+y)ν dz

)
dy

=

∫
R

f(y)e−2πiyν
∫
R

g(z)e−2πizν dz dy

=

∫
R

f(y)e−2πiyν dy︸ ︷︷ ︸
=:F{f}(ν)

∫
R

g(z)e−2πizν dz︸ ︷︷ ︸
=:F{g}(ν)

.



As the Fourier transform and its inverse can be implemented to run in O(n log n) time,
convolutions of two images with n pixels each can be computed efficiently in O(n log n)
by exploiting this property:

f ∗ g = F−1{F{f} · F{g}}.

The direct approach of implementing the convolution has runtime O(n2).

(c) Let us consider the difference quotient

(f ∗ g)(x+ t)− (f ∗ g)(x)

t
=

∫
R

f(y)
g(x+ t− y)− g(x− y)

t
dy.

Now taking the limit t→ 0 we have

d

dx
(f ∗ g)(x) = lim

t→0

(f ∗ g)(x+ t)− (f ∗ g)(x)

t

= lim
t→0

∫
R

f(y)
g(x+ t− y)− g(x− y)

t
dy

=

∫
R

lim
t→0

f(y)
g(x+ t− y)− g(x− y)

t
dy (see Remark 1)

=

∫
R

f(y)(
d

dx
g)(x− y) dy (see Remark 2)

= f ∗ dg
dx

=
dg

dx
∗ f.

The remaining equality follows from the above and commutativity of convolution:

d

dx
(f ∗ g) =

d

dx
(g ∗ f) = g ∗ df

dx
=
df

dx
∗ g.

Remark 1: In order to interchange integration and limit, one needs some additional con-
ditions to hold (see Lebesgue’s dominated convergence theorem). The theorem requires
that

Ft(y) := f(y)
g(x+ t− y)− g(x− y)

t
,

convergences pointwise to a function Ft(y) → F (y) (1), and Ft is dominated by an inte-
grable function F̄ (2) in the sense

|Ft(y)| ≤ F̄ (y),∀t,∀y.

(1) Pointwise convergence is easy to see, since g is continuously differentiable:

lim
t→0

Ft(y) = f(y)g′(x− y) .

(2) To find a dominating function, we can use the fact that g is integrable, i.e.

lim
|x|→∞

g(x) = 0 and thus lim
|x|→∞

g′(x) = 0 .

Since g′ is continuous and tends to 0 for large |x|, there is anM such that |g′(ξ)| ≤M
for all ξ ∈ R. From the mean value theorem, we further have

Ft(y) = f(y)g′(ξ) for some ξ ∈ [x− y, x− y + t] .

Thus, |Ft(y)| ≤ M |f(y)|. Since f is integrable, M |f | is also integrable, so it meets
our requirements for the dominating function.



Remark 2: To see the equality

lim
t→0

g(x+ t− y)− g(x− y)

t
= (

d

dx
g)(x− y)

note that for any z = f̃(x) we have

lim
t→0

g(f̃(x) + t)− g(f̃(x))

t
= lim

t→0

g(z + t)− g(z)

t
= g′(z) = g′(f̃(x)).


