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Part I: Theory

1. We start by the directional derivative, as on the last sheets:
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Hence the Euler-Lagrange equation is:
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= 0, for x ∈ ∂Ω, n is the normal.

2. (a) The upsampling operator has the dimensions U ∈ R(4nm)×(nm). It replaces each entry
(i, j) of the image I by four pixels at (2i, 2j), (2i+ 1, 2j), (2i, 2j + 1), (2i+ 1, 2j + 1).
This can be modeled as:

U = (Im ⊗ u)⊗ (In ⊗ u), where u =

(
1
1

)
In a similar manner we can compute the matrix A as:

A = (I0.5m ⊗ a)⊗ (I0.5n ⊗ a), for a =

(
0.5 0.5
0.5 0.5

)

Let g =

0.2741
0.4519
0.2741

 ∈ R3 be the kernel vector containing the weights for a discrete

Gaussian blurring and let Gn ∈ Rn×n and Gm ∈ Rm×m be the tridiagonal matrices
containing the elements of g on the diagonals, e.g

Gn =


0.4519 0.2741
0.2741 0.4519 0.2741

. . . . . .
0.2741 0.4519


1



Then the blurring matrix is:
B = Gm ⊗Gn

Note, that this can also be extended to arbitrary kernels g. In this case we get some more
general band diagonal matrices Gn, Gm.
Not at last we have to compute the matrix representation of the shift operator Si. For
the sake of simplicity we are only considering constant shifts (si, sj) ∈ Z2. Let now
Sn ∈ Rn×n be the matrix containing only zeros except for ones at the si’th subdiagonal.
For si = 1 this would be:

Sn =

0 1
. . . . . .

0 1


If now Sm ∈ Rm×m is the same matrix for the shift in the x-direction, then we get:

Si = Sm ⊗ Sn

An extension to arbitrary shifts can be derived with a little more effort but it is in principal
also straightforward, you just need to insert 1 at the right entries to model the mapping
from (i, j) to (i+ si, j + sj).

(b) We can use the identity from the first exercise to derive the Euler Lagrange equation of
E. The energy E can be decomposed into the data term and the TV-regularization, such
that: E = Edata + λETV. Now we can compute the Gateaux derivative of both terms
individually. We know already, that:
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)
.

Note, that the concatenation of linear operators ABSi is again simply a linear operator.
We therefore get:
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