Variational Methods for Computer Vision: Solution Sheet 7

Exercise: December 12, 2018
Prof. Dr. Daniel Cremers, Marvin Eisenberger, Mohammed Brahimi

Part I: Theory

1. (a) The line integral of a vector field V along a curve ~(t) is defined as

T
/ V(s)ds = /0 (V (y(8), 5(1)) dt

so we have to integrate over the scalar product of V' with the tangent vector to the curve at
each point of the curve. For a square, the tangent vectors are (0, £1) and (£1,0).

y

1 <

o ta

E’1 X

We start by evaluating the left hand side of the equation:

/ curl Vdady = /vw(a:,y) — uy(z,y)dzedy
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(b) To show the principle, we first join two squared of same side length that touch in one side:

/fum x,y) (z,y)dzdy + /vm(a:,y) — uy(x,y)dzdy
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In the more general case, we can use the same argument: Whenever we add a new square
@, to the set 2, 1 = U¢:17._,,n_1Qi, we can call the part of the boundary where the
two sets touch a. Since both curves are integrated counter-clockwise, €2, 1 contributes
J, V(s)d5 to the total integral, and Q,, contributes — [ V'(s)ds. Thus, the two contri-
butions always cancel each other out, leading to the desired result. All other parts of the
boundaries of 2,1 and ),, combine to form the boundary of €2,,. Note that its not neces-
sary that a is exactly one whole side of the square (), — it can also be more sides or only
part of one side.

2. Consider the energies of regions €27 and 2y before and after the merge operation:

Ebefore = /(I(CII) — u1)2da: + /(I(x) — ’U,Q)Qd:L’ + V’Cbefore’
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Eatter = / (I(.T) - Umerged)zdx + V|Cafter|~
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Here we assume that u1, u2 and tumergeq Optimize the energy given the respective region bound-
aries, i.e. they are the average intensity of the respective region (shown in the lecture). From
this it follows that
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which means uyerged i a weighted average of uy and us.

Furthermore we are going to use the fact that for the average f of a function f on a domain 2,

Jt@ = pras = [ f@pde—2f [ f@ye+ 7 [ o
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which is true in particular for f = I, f = u; and Q = Q.

Since merging two regions always results in the contour C getting shorter, we can define a
change 6C' > 0 in contour length as

6C = |Catter| — |Chefore| -

For the change in energy J E, we adopt the more common definition of substracting the ‘before’-
value from the ‘after’-value:

OF = FEatter — Fbefore
= / (I(2) — Umerged) dx — /(I(m) —uy)?dz — /(I(x) — up)?3dx — v6C
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