
Variational Methods for Computer Vision: Solution Sheet 7

Exercise: December 12, 2018
Prof. Dr. Daniel Cremers, Marvin Eisenberger, Mohammed Brahimi

Part I: Theory

1. (a) The line integral of a vector field V along a curve γ(t) is defined as∫
γ
V (s)d~s =

∫ T

0
〈V (γ(t)), γ̇(t)〉 dt ,

so we have to integrate over the scalar product of V with the tangent vector to the curve at
each point of the curve. For a square, the tangent vectors are (0,±1) and (±1, 0).
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We start by evaluating the left hand side of the equation:∫
Q

curlV dxdy =

∫
Q

vx(x, y)− uy(x, y)dxdy

=

1∫
0

1∫
0

vx(x, y)dxdy −
1∫

0

1∫
0

uy(x, y)dydx

=

1∫
0

v(x, y)|x=1
x=0 dy −

1∫
0

u(x, y)|y=1
y=0 dx

=

1∫
0

v(1, y)dy −
1∫

0

v(0, y)dy −
1∫

0

u(x, 1)dx+

1∫
0

u(x, 0)dx

=

1∫
0

v(1, y)dy

︸ ︷︷ ︸∫
a
V (s)d~s

+

0∫
1

v(0, y)dy

︸ ︷︷ ︸∫
c
V (s)d~s

+

0∫
1

u(x, 1)dx

︸ ︷︷ ︸∫
b

V (s)d~s

+

1∫
0

u(x, 0)dx

︸ ︷︷ ︸∫
d

V (s)d~s

=

∮
∂Q

V (s)d~s.



(b) To show the principle, we first join two squared of same side length that touch in one side:
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∫
Q1

vx(x, y)− uy(x, y)dxdy +

∫
Q2

vx(x, y)− uy(x, y)dxdy

=

∫
a

V (s)d~s+

∫
b

V (s)d~s+

∫
c

V (s)d~s+

∫
d

V (s)d~s

−
∫
a

V (s)d~s+

∫
g

V (s)d~s+

∫
f

V (s)d~s+

∫
e

V (s)d~s

=

∫
b

V (s)d~s+

∫
c

V (s)d~s+

∫
d

V (s)d~s+

∫
g

V (s)d~s+

∫
f

V (s)d~s+

∫
e

V (s)d~s

=

∮
∂(Q1∪Q2)

V (s)d~s.

In the more general case, we can use the same argument: Whenever we add a new square
Qn to the set Ωn−1 = ∪̇i=1,...,n−1Qi, we can call the part of the boundary where the
two sets touch a. Since both curves are integrated counter-clockwise, Ωn−1 contributes∫
a V (s)d~s to the total integral, and Qn contributes −

∫
a V (s)d~s. Thus, the two contri-

butions always cancel each other out, leading to the desired result. All other parts of the
boundaries of Ωn−1 and Qn combine to form the boundary of Ωn. Note that its not neces-
sary that a is exactly one whole side of the square Qn — it can also be more sides or only
part of one side.

2. Consider the energies of regions Ω1 and Ω2 before and after the merge operation:

Ebefore =

∫
Ω1

(I(x)− u1)2dx+

∫
Ω2

(I(x)− u2)2dx+ ν|Cbefore|

Eafter =

∫
Ω1∪Ω2

(I(x)− umerged)2dx+ ν|Cafter|.

Here we assume that u1, u2 and umerged optimize the energy given the respective region bound-
aries, i.e. they are the average intensity of the respective region (shown in the lecture). From
this it follows that

umerged =
u1A1 + u2A2

A1 +A2
, (1)



which means umerged is a weighted average of u1 and u2.

Furthermore we are going to use the fact that for the average f̄ of a function f on a domain Ω,∫
Ω

(f(x)− f̄)2dx =

∫
Ω

f(x)2dx− 2f̄

∫
Ω

f(x)dx+ f̄2

∫
Ω

dx

=

∫
Ω

f(x)2dx− 2f̄ |Ω|f̄ + f̄2|Ω| =
∫
Ω

f(x)2dx− |Ω|f2
,

(2)

which is true in particular for f = I , f̄ = ui and Ω = Ωi.

Since merging two regions always results in the contour C getting shorter, we can define a
change δC > 0 in contour length as

δC = |Cafter| − |Cbefore| .

For the change in energy δE, we adopt the more common definition of substracting the ‘before’-
value from the ‘after’-value:

δE = Eafter − Ebefore

=

∫
Ω1∪Ω2

(I(x)− umerged)2dx−
∫
Ω1

(I(x)− u1)2dx−
∫
Ω2

(I(x)− u2)2dx− νδC

=

∫
Ω1∪Ω2

I(x)2dx− (A1 +A2)u2
merged (using (2))

−
∫
Ω1

I(x)2dx+A1u1
2 −

∫
Ω2

I(x)2dx+A2u2
2 − νδC

= A1u1
2 +A2u2

2 − (A1 +A2)

(
u1A1 + u2A2

A1 +A2

)2

− νδC (using (1))

= A1u1
2 +A2u2

2 − (u1A1 + u2A2)2

A1 +A2
− νδC

= A1u1
2 +A2u2

2 − (u1A1)2 + 2u1A1u2A2 + (u2A2)2

A1 +A2
− νδC

=
(A1 +A2)A1u1

2 + (A1 +A2)A2u2
2 − (u1A1)2 − 2u1A1u2A2 − (u2A2)2

A1 +A2
− νδC

=
A1A2u1

2 +A1A2u2
2 − 2A1A2u1u2

A1 +A2
− νδC

=
A1A2

A1 +A2
(u1 − u2)2 − νδC.


