Variational Methods for Computer Vision: Solution Sheet 10

Exercise: January 16, 2019
Prof. Dr. Daniel Cremers, Marvin Eisenberger, Mohammed Brahimi

Part I: Theory

1. (a) We use the fact that for two vectors a and b in \mathbb{R}^{n},

$$
|a+b| \leq|a|+|b|,
$$

and rewrite the energy as

$$
E(u)=\int_{\Omega}\left(f_{1}-f_{2}\right) u+\nu|\nabla u|+f_{2} \mathrm{~d} x .
$$

Then a short calculation shows for functions u, v and $\alpha \in[0,1]$
$E(\alpha u+(1-\alpha) v)=$
$\int_{\Omega}\left(f_{1}-f_{2}\right)(\alpha u+(1-\alpha) v)+\nu|\alpha \nabla u+(1-\alpha) \nabla v|+\alpha f_{2}+(1-\alpha) f_{2} \mathrm{~d} x \leq$
$\int_{\Omega} \alpha\left(f_{1}-f_{2}\right) u+(1-\alpha)\left(f_{1}-f_{2}\right) v+\alpha \nu|\nabla u|+(1-\alpha) \nu|\nabla v|+\alpha f_{2}+(1-\alpha) f_{2} \mathrm{~d} x=$ $\alpha E(u)+(1-\alpha) E(v)$.

Thus, E is convex in u.
(b) $[0,1] \subset \mathbb{R}$ is a convex set (which you can show directly by considering a convex combination of two elements of $[0,1]$). Therefore it holds for $u, v \in U, x \in \Omega$ and $\alpha \in[0,1]$

$$
\alpha u(x)+(1-\alpha) v(x) \in[0,1] .
$$

Since $x \in \Omega$ can be chosen arbitrary, it follows that $\alpha u+(1-\alpha) v \in U$. Therefore U is a convex set.

Note: In general, it holds that for any domain Ω,

$$
U:=\{u: \Omega \rightarrow C\} \quad \text { convex } \quad \Leftrightarrow \quad C \quad \text { convex . }
$$

(c) Let $F(u)=\int_{\Omega}(f(x)-u(x))^{2} \mathrm{~d} x$. Then for all $u \in U$

$$
\begin{aligned}
F(u) & =\int_{f(x)>1}(f(x)-u(x))^{2} \mathrm{~d} x+\int_{f(x)<0}(f(x)-u(x))^{2} \mathrm{~d} x+\int_{f(x) \in[0,1]}(f(x)-u(x))^{2} \mathrm{~d} x \\
& \geq \int_{f(x)>1}(f(x)-1)^{2} \mathrm{~d} x+\int_{f(x)<0} f(x)^{2} \mathrm{~d} x+0=F\left(f_{U}\right),
\end{aligned}
$$

which implies f_{U} is the global minimum of $F(u)$ and therefore the projection of f onto the convex set U.
(d) Using the result from the previous exercise sheets

$$
\frac{\mathrm{d} E}{\mathrm{~d} u}=\frac{\partial \mathcal{L}}{\partial u}-\operatorname{div} \frac{\partial \mathcal{L}}{\partial \nabla u}=0 .
$$

The partial derivatives are given by:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial u}=f_{1}-f_{2}, \\
& \frac{\partial \mathcal{L}}{\partial \nabla u}=\nu \frac{\nabla u}{|\nabla u|} .
\end{aligned}
$$

