
Gradient Methods

V. Estellers

WS 2017

Gradient Methods

(uk, E(uk))

(uk+1, E(uk+1))

(uk+2, E(uk+2))

(u∗, E(u∗)). . .

∇E(u∗) = 0

2

Outline

Gradient Descent

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Projected GD

Convergence

Proximal Gradient

Extensions

Gradient Descent 3

Gradient Descent

Consider the unconstrained and smooth optimization problem

u∗ ∈ arg min
u∈Rn

E(u),

for E : Rn → R ∪ {∞} proper, closed, and convex

Gradient descent is an optimization technique for the “simple” case

– dom E = Rn

– E ∈ C1(Rn)

Gradient Descent 4

Descent methods

Suppose we are at a point uk ∈ Rn where ∇E(uk) 6= 0

Consider the ray u(τ) = uk + τd for some direction d ∈ Rn

E(u(τ)) = E(uk + τd) = E(uk) + τ〈∇E(uk), d〉+ o(τ)

– τ〈∇E(uk), d〉 dominates o(τ) for sufficiently small τ

– If 〈∇E(uk), d〉 < 0, d is a descent direction as, for suff. small τ ,

E(u(τ)) < E(u)

Gradient Descent 5

Descent methods

∇E(uk)

−∇E(uk)

uk − α∇E(uk)

uk − β∇E(uk)

uk − γd
d

uk − δd

Gradient Descent 6

Descent methods

The negative gradient is the steepest descent direction

argmin
‖d‖=1

{
〈d,∇E(uk)〉

}
= − ∇E(uk)

‖∇E(uk)‖

The gradient is orthogonal to the iso-contours γ : I → Rn

∇E(γ(t)) ⊥ γ̇(t), t ∈ I

Common choices of descent directions

– Scaled gradient: dk = −Dk∇E(uk), Dk � 0

– Newton: Dk = [∇2E(uk)]−1

– Quasi-Newton: Dk ≈ [∇2E(uk)]−1

– Steepest descent: Dk = I

Gradient Descent 7

Gradient descent

Definition
Given a function E ∈ C1(Rn), an initial point u0 ∈ Rn and a sequence

(τk) ⊂ R of step sizes, the iteration

uk+1 = uk − τk∇E(uk), k = 0, 1, 2, . . . ,

is called gradient descent.

Philosophy:

Generate a decreasing sequence {E(uk)}∞k=0

Each iteration is cheap, easy to code

Choosing τk to guarantee convergence is not trivial

Gradient Descent 8

Constant step size

Consider a constant step size τk = τ

Will gradient descent work for any convex function?

-2 -1 0 1 2
0

0.5

1

1.5

2

f(x) = 2/3 |x|3/2

-2 -1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5
r f(x) = sign(x) |x|0.5

For any constant time step τ > 0, the starting point u0 =
(
τ
2

)2
results in a gradient descent sequence u0,−u0, u0, . . .

Gradient Descent 9

Intuition and requirements for constant step-size

Intuitively, an ”infinitely quickly changing gradient” leads to ”infinitely

quickly changing” gradient descent updates

uk+1 = uk − τk∇E(uk), k = 0, 1, 2, . . . ,

Need a stronger version of differentiability to prevent inf. quick changes

Definition: L-smooth function
If E : Rn → R is continuously differentiable and its first derivative is

Liptschitz continuous, i.e. there exists an L ≥ 0 such that

‖∇E(u)−∇E(v)‖ ≤ L ‖u− v‖ ,∀u, v ∈ Rn,

then E is called L-smooth

Gradient Descent 10

Lipschitz continuity

Reminder
f : Rn → Rm is called Lipschitz continuous if for some L ≥ 0

‖f(x)− f(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Rn.

If the function is differentiable, we can characterize Lipschitz continuous

functions by the size of its gradient.

Theorem: Lipschitz continuity for differentiable functions

A differentiable function E : Rn → Rm is Lipschitz with parameter L if

and only if ‖∇E(x)‖S∞ ≤ L for all x ∈ Rn.

Gradient Descent 11

Convergence Analysis

Conjecture

For any L-smooth proper convex function E (with a minimizer) there

exists a step size τ such that the gradient descent algorithm converges

To prove this conjecture, we will use a general fixed-point Iteration for

algorithms of the form

uk+1 = G(uk)

Example:

G(u) = u− τ∇E(u).

If the iteration converges to û and ∇E is continuous, then ∇E(û) = 0.

Gradient Descent 12

Outline

Gradient Descent

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Projected GD

Convergence

Proximal Gradient

Extensions

Convergence of Fixed-Point Iterations 13

Convergence of
Fixed-Point Iterations

References:

Ryu and Boyd, Primer on Monotone Operator Methods, 2016.

Burger, Sawatzky, and Steidl, First Order Algorithms in Variational Image

Processing, 2017.

Bauschke, and Combettes, Convex Analysis and Monotone Operator

Theory in Hilbert Spaces, 2011.

Convergence of Fixed-Point Iterations 14

Fixed-point iterations with contractions

When does the fixed-point iteration

uk+1 = G(uk) (1)

converge?

Banach fixed-point theorem

If the update rule G : Rn → Rn is a contraction, i.e. if there exists a

L < 1 such that

‖G(u)−G(v)‖2 ≤ L‖u− v‖2

holds for all u, v ∈ Rn, then the iteration (1) converges to the unique

fixed-point û of G. More precisely,

‖uk − û‖2 ≤ Lk‖u0 − û‖2.

Convergence of Fixed-Point Iterations 15

Fixed-point iterations with averaged operators

G being a contraction is too restrictive in many cases

G being non-expansive, i.e. Lipschitz continuous with constant

L = 1, is commonly true.

– any rotation G is non-expansive and has a fixed point (0)

– the iteration uk+1 = G(uk) does not converge

Averaged operator

An operator G : Rn → Rn is called averaged if there exists a

non-expansive mapping H : Rn → Rn and a constant α ∈ (0, 1) such

that

G = αI + (1− α)H.

Convergence of Fixed-Point Iterations 16

Criteria for being averaged

Lemma about nonexpansive operators

Convex combinations as well as compositions of nonexpansive operators

are nonexpansive.

Being averaged for smaller α

If a function G : Rn → Rn is averaged with respect to α ∈]0, 1[, then it

is also averaged with respect to any other parameter α̃ ∈]0, α[.

Composition of averaged operators

If G1 : Rn → Rn and G2 : Rn → Rn are averaged, then G2 ◦G1 is also

averaged.

Proofs: Notes

Convergence of Fixed-Point Iterations 17

Criteria for being averaged

Firmly non-expansive

A function G : Rn → Rn is called firmly nonexpansive, if for all

u, v ∈ Rn it holds that

‖G(u)−G(v)‖22 ≤ 〈G(u)−G(v), u− v〉.

Firmly nonexpansive operators are averaged

A function G : Rn → Rn is firmly nonexpansive if and only if G is

averaged with α = 1
2 .

Proof: Notes

Convergence of Fixed-Point Iterations 18

Convergence for averaged operators

Krasnosel’skii-Mann Theorem
If the operator G : Rn → Rn is averaged and has a fixed-point, then the

iteration

uk+1 = G(uk)

converges to a fixed point of G for any starting point u0 ∈ Rn.

Proof: Notes

Convergence of Fixed-Point Iterations 19

Short summary

We have seen:

An operator G is called a contraction if it is Lipschitz continuous

with L < 1.

Contractions have a unique fixed-point and their fixed-point

iteration converges with O(Lk).

An operator R is called a nonexpansive if it is Lipschitz continuous

with L = 1.

An operator G is called a averaged if G = αI + (1− α)R for some

nonexpansive operator R and α ∈ (0, 1).

If an averaged operator has a fixed-point, then the fixed-point

iteration converges. The convergence rate states that∑n
k=1 ‖G(uk)− uk‖2 ≤ C for some constant C.

Firmly nonexpansive operators are the same as averaged operators

with α = 1
2 .

Convergence of Fixed-Point Iterations 20

Relation to gradient descent

We now have two loose ends:

– a conjecture about the convergence of the gradient descent iteration

– theorem that states the convergence of a fixed-point iteration for

averaged operators.

we need to write gradient descent as an averaged operator

Baillon-Haddad theorem
A continuously differentiable convex function E : Rn → R is L-smooth if

and only if 1
L∇E is firmly nonexpansive, i.e.

〈∇E(u)−∇E(v), u− v〉 ≥ 1

L
‖∇E(u)−∇E(v)‖22

for all u, v ∈ Rn.

Proof: See Nesterov, Introductory Lectures on Convex Optimization,

Theorem 2.1.5.
Convergence of Fixed-Point Iterations 21

Outline

Gradient Descent

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Projected GD

Convergence

Proximal Gradient

Extensions

Back to GD 22

Convergence of gradient descent

Gradient descent as an averaged operator

If E : Rn → R has a minimizer, is convex and L-smooth, and τ ∈]0, 2
L [,

then the gradient descent iteration converges to a minimizer.

Sufficient: G(u) = u− τ∇E(u) is averaged.

We know 1
L∇E is averaged with α = 1/2, i.e., 1

L∇E = 1
2 (I + T)

for a non-expansive T .

It hold that

G(u) = u− τL 1

L
∇E(u) =

(
1− Lτ

2

)
I +

Lτ

2
(−T)

If T is non-expansive, (−T) is non-expansive, too.

⇒ For τ ∈]0, 2
L [, G is averaged.

Back to GD 23

Convergence rate

How fast does gradient descent converge?

Theory of averaged operators shows
∑
k

‖∇E(uk)‖22 is bounded.

Careful analysis shows that for L-smooth functions with τ ∈ (0, 2
L):

E(uk+1) ≤ E(uk) E(uk)− E(u∗) ∈ O(1/k)

.

It is not possible to get a contraction to speed up convergence because a

contraction would imply the existence of a unique fixed-point.

Reminder
O(g) = {f | ∃C ≥ 0,∃n0 ∈ N0,∀n ≥ n0 : |f(n)| ≤ C|g(n)|}

Back to GD 24

Strongly-convex + L-smooth

Gradient descent as an averaged operator

If E : Rn → R is m-strongly convex and L-smooth, and τ ∈]0, 2
m+L [,

then the gradient descent iteration converges to the unique minimizer u∗

of E with ‖uk − u∗‖ ≤ ck‖u0 − u∗‖.

Proof on the Notes.

Back to GD 25

Strong convexity

Definition: strong convexity

A function E : Rn → R is called strongly convex with constant m or

m-strongly convex if E(u)− m
2 ‖u‖

2
2 is still convex.

Theorem: characterization of m-strongly convex functions 1

For E ∈ C1(Rn) the following are equivalent:

1. E(u)− m
2 ‖u‖

2 is convex

2. E(v) ≥ E(u) + 〈∇E(u), v − u〉+ m
2 ‖v − u‖

2

3. 〈∇E(u)−∇E(v), u− v〉 ≥ m ‖u− v‖2

4. ∇2E(u) � m · I, if E ∈ C2(Rn)

1Ryu, Boyd, A Primer on Monotone Operator Methods, Appendix A
Back to GD 26

Optimal convergence rates

In computer vision, m-strongly convex L-smooth energies are very rare!

Can one do better than the O(1/k) in the L-smooth case?

Famous analysis by Nesterov, (Th 2.1.7 and Th2.1.13) for first order

methods of the form:

uk+1 ∈ u0 + span{∇E(u0), . . . ,∇E(uk)}

If E can be any convex L-smooth function

then no first order method can have a worst-case complexity less

than O(1/k2).

and E is m-strongly convex, then no first order method can have a

worst-case complexity less than O((
√
κ−1√
κ+1

)2k) for κ = L/m.

Back to GD 27

Obtaining optimal convergence rates

Nesterov’s Accelerated Gradient Descent

Pick some starting point v0 = u0, and iterate

1. Compute

uk+1 = vk − 1

L
∇E(vk)

2. Find the next α ∈]0, 1[by solving

α2
k+1 = (1− αk+1)α

2
k +

m

L
αk+1

3. Compute the extrapolation of uk+1 via

βk =
αk(1− αk)
α2
k + αk+1

vk+1 = uk+1 + βk(u
k+1 − uk)

Back to GD 28

Backtracking line search

Sometimes Lipschitz constant L not known

The convergence analysis shows that one really only needs

E(uk+1) ≤ E(uk)− βk‖∇E(uk)‖2

for some βk ≥ β > 0.

Idea: Pick α ∈ (0, 0.5), β ∈ (0, 1)

Then determine τk each iteration by:

τk ← 1

while E
(
uk − τk∇E(uk)

)
> E(uk)− ατk

∥∥∇E(uk)
∥∥2

τk ← βτk

end

Back to GD 29

Backtracking line search

Line search...

... often leads to improved convergence in practice

... has a (slight) overhead each iteration

... has the same convergence rate as with constant steps

For a backtracking line search scheme for Nesterov’s accelerated gradient

method please see Introductory Lectures on Convex Optimization, page

76, scheme (2.2.6).

Remark: Other strategies for linear search exists, e.g.

τk = argmin
τ
E(uk − τ∇E(uk))

Back to GD 30

Application: TV image denoising

Lets consider the applications of image denoising:

Via energy minimization: Let D1 and D2 be finite difference operators

for the partial derivatives. Determine

û ∈ argmin
u

λ

2
‖u− f‖22︸ ︷︷ ︸

=Hf (u)stay close to input

+
∑
x∈Ω

√
(D1u(x))2 + (D2u(x))2︸ ︷︷ ︸

=TV (u) suppress noise
Back to GD 31

Application: TV image denoising

Problem: The so called total variation regularization

TV (u) =
∑
x∈Ω

√
(D1u(x))2 + (D2u(x))2

is not differentiable!

Idea: Approximate it with a differentiable function

TVε(u) =
∑
x∈Ω

φ
√

(D1u(x))2 + (D2u(x))2 + ε2

Exercises: Our denoising model is L-smooth for

L = λ+
‖D‖S∞

ε

where ‖D‖S∞ is the spectral norm of a matrix. It is defined as the

square root of largest eigenvalue of DTD.

We expect the convergence to be better for large ε, but we expect

TV (u) ≈ TVε(u) only for small ε...
Back to GD 32

Image denoising

Back to GD 33

ε = 0.1

Back to GD 34

ε = 0.01

→ Motivation for non-smooth optimization!

Back to GD 35

Convergence, τ = 2/(m+ L)

100 101 102
10−1

100

101

102

103

104

105

106

Iteration

E
(u
k
)
−
E
(u
∗)

Numerical
Theory
Worst case

Back to GD 36

Convergence, backtracking line search

100 101 102
10−1

100

101

102

103

104

105

106

Iteration

E
(u
k
)
−
E
(u
∗)

Constant steps
Backtracking, alpha=0.1, beta=0.5
Backtracking, alpha=0.5, beta=0.8

Back to GD 37

Image inpainting

f ∈ RN 1−m ∈ RN u∗ ∈ RN

u∗ ∈ argmin
u

λ

2
‖m · (u− f)‖2 + TVε(u)

Energy is not strongly convex, but L-smooth

Sublinear upper bound on convergence speed

Back to GD 38

Image Inpainting

Back to GD 39

50% missing pixels

Back to GD 40

50% missing pixels

Back to GD 41

70% missing pixels

Back to GD 42

70% missing pixels

Back to GD 43

90% missing pixels

Back to GD 44

90% missing pixels

Back to GD 45

Concluding remarks and outlook

GD is still popular to date due to its simplicity and flexibility

Various theoretically optimal extensions (Heavy-ball acceleration,

Nesterov momentum) exist

Envelope approach: many advanced algorithms for non-smooth

optimization are just gradient descent on a particular (albeit

complicated) energy

Endless of variants and modifications of descent methods

conjugate, accelerated, preconditioned, projected, conditional,

mirrored, stochastic, coordinate, continuous, online, variable metric,

subgradient, proximal, ...

Back to GD 46

Subgradient descent in one slide

We have seen in the exercises, that even for functions that are not

L-smooth, gradient descent with a small step size reduces the energy up

to some point where it starts oscillating.

Possible convergent variant: Subgradient descent

uk+1 = uk − τkpk, for any pk ∈ ∂E(uk).

If it holds that

E has a minimizer

E is Lipschitz continuous

τk → 0, but
∑n
k=1 τk →∞, e.g. τk = 1/k

then the subgradient descent iteration converges with

E(uk)− E(u∗) ∈ O(1/
√
k)

Back to GD 47

Summary

This lecture is about

u∗ ∈ arg min
u∈Rn

E(u),

for E : Rn → R ∪ {∞} proper, closed, convex.

Gradient descent:

dom E = Rn

For L-smooth E (that has a minimizer)

– energy convergence in O(1/k) for constant step sizes

– energy convergence in O(1/k2) for Nesterov’s method.

For L-smooth m-strongly convex E: energy and iterate convergence

in O(ck)
Line search strategies for unknown Lipschitz constant L.

Back to GD 48

Outline

Gradient Descent

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Projected GD

Convergence

Proximal Gradient

Extensions

Projected GD 49

Gradient projection

Type of problem:

u∗ ∈ argmin
u∈C

E(u), (2)

for an L-smooth E, and a nonempty, closed, convex set C.

Definition
Projection For a (nonempty) closed convex set C ⊂ Rn,

πC(v) = argmin
u∈C

‖u− v‖22

is called the projection of v onto the set C.

Projected GD 50

Projections

Theorem
Existence and Uniqueness of the Projection For any (nonempty) closed

convex set C ⊂ Rn and any v the projection πC(v) exists and is single

valued.

Proof: Notes.

Abuse of notation: Although πC(v) is, by definition, a set, we usually

identify πC(v) with the single element in the set.

Projected GD 51

Example projections

What is the projection of v ∈ Rn onto

C = {u ∈ Rn | ‖u‖2 ≤ 1}?

C = {u ∈ Rn | ‖u‖∞ := maxi |ui| ≤ 1}?

C = {u ∈ Rn | ui ∈ [a, b]}?

C = {u ∈ Rn | ui ≥ a}?

C = {u ∈ Rn | ‖u‖1 =
∑
i |ui|}?

Projected GD 52

Intuition on gradient projection

Let E be L-smooth convex function and C a nonempty, closed, convex

set. Consider a problem

u∗ ∈ argmin
u∈C

E(u), (3)

We know that, without the constraint u ∈ C, gradient descent works and

looks like:

uk+1 = uk − τk∇E(uk)

The problem with GD is that the update might violate uk+1 ∈ C

Gradient projection solves this by projecting every iteration back to

the feasible set

uk+1 = πC(u
k − τk∇E(uk))

Projected GD 53

Intuition on gradient projection

Toy problem min|ui|≤1 ‖u− f‖22

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Constraint set
f

u
0

Projected GD 54

Intuition on gradient projection

Toy problem min|ui|≤1 ‖u− f‖22

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Constraint set
f

u
0

u
1

Projected GD 54

Intuition on gradient projection

Toy problem min|ui|≤1 ‖u− f‖22

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Constraint set
f

u
0

u
1

Projected GD 54

Intuition on gradient projection

Toy problem min|ui|≤1 ‖u− f‖22

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Constraint set
f

u
0

u
1

u
2

Projected GD 54

Intuition on gradient projection

Toy problem min|ui|≤1 ‖u− f‖22

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Constraint set
f

u
0

u
1

u
2

Projected GD 54

Intuition on gradient projection

Toy problem min|ui|≤1 ‖u− f‖22

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Constraint set
f

u
0

u
1

u
2

u
3

Projected GD 54

Gradient Projection Algorithm

Definition
Gradient Projection Algorithm Let C ⊂ Rn be a nonempty closed convex

set and let E : Rn → R ∈ C1(Rn). Then, for u0 ∈ C

uk+1 = πC(u
k − τ∇E(uk))

is called the gradient projection algorithm.

Before we spend time implementing it, we need to know when, how, and

why it works, i.e., for which E and τ the fixed-point iteration

G(u) = πC(u− τ∇E(u))

converges

Projected GD 55

Projected GD as a fixed-point iteration

Strategy: show that the fixed point iteration

G(u) = πC(u− τ∇E(u))

converges because G is an averaged operator

From the analysis of gradient descent, we know:

1. for τ ∈ (0, 2
L) the operator G1(u) = u− τ∇E(u) is averaged

2. the composition of averaged operators is averaged

If we can show that πC is averaged, we are done

Projected GD 56

Properties of the projection

Theorem
Firm Nonexpansiveness The projection πC onto a nonempty closed

convex set C ⊂ Rn is firmly nonexpansive, i.e. it meets

〈u− v, πC(u)− πC(v)〉 ≥ ‖πC(u)− πC(v)‖2 ∀u, v ∈ Rn.

Remember that a firmly non-expansive operator is averaged with α = 1
2

Corollary

For an L-smooth energy E that has a minimizer and a choice τ ∈]0, 2
L [

the gradient projection converges with rate rate is O(1/k)

O(1/k) is suboptimal, a generalized version with O(1/k2) comes later

Projected GD 57

Convergence of the projected gradient descent

Recall: The composition of a non-expansive operator with a contraction

is a contraction

This means that our gradient descent result carries over:

Theorem
For E being L-smooth and m-strongly convex and τ ∈ (0, 2

L) the

gradient projection algorithm converges to the (unique) global minimizer

u∗ with E(uk)− E(u∗) ∈ O(ck) with c < 1

Projected GD 58

Example Application: Solving a SUDOKU

Find the missing numbers such that each block, each row, and each

column contains each number 1– 4 only once

2 3

1 3

3 2

2 4

We can do this with convex optimization?

Idea: Identify the number i with

ei = (0, · · · , 0, 1︸︷︷︸
ith position

, 0, · · · , 0)T .

Projected GD 59

Example Application: Solving a SUDOKU

Find the missing numbers such that each block, each row, and each

column contains each number 1– 4 only once

2 4 1 3

1 3 2 4

4 1 3 2

3 2 4 1

We can do this with convex optimization?

Idea: Identify the number i with

ei = (0, · · · , 0, 1︸︷︷︸
ith position

, 0, · · · , 0)T .

Projected GD 59

Example Application: Solving a SUDOKU

Find the missing numbers such that each block, each row, and each

column contains each number 1– 4 only once

2 4 1 3

1 3 2 4

4 1 3 2

3 2 4 1

We can do this with convex optimization?

Idea: Identify the number i with

ei = (0, · · · , 0, 1︸︷︷︸
ith position

, 0, · · · , 0)T .

Projected GD 59

Example Application: Solving a SUDOKU

Find the missing numbers such that each block, each row, and each

column contains each number 1– 4 only once

2 4 1 3

1 3 2 4

4 1 3 2

3 2 4 1

We can do this with convex optimization?

Idea: Identify the number i with

ei = (0, · · · , 0, 1︸︷︷︸
ith position

, 0, · · · , 0)T .

Projected GD 59

Example Application: Solving a SUDOKU

For the 4× 4 case, look for a matrix u ∈ {1, 2, 3, 4}4×4 such that

ui,j = fi,j for the entries fi,j that are given

Reformulation: find u ∈ {0, 1}4×4×4, where ui,j,k = 1 means ui,j = k,

subject to the constraints

Rule Implication

One number for each blank spot
∑
k ui,j,k = 1 ∀i, j

Respect given entries ui,j,k = 1 if fi,j = k

Numbers occur in a row once
∑
j ui,j,k = 1 ∀i, k

Numbers occur in a column once
∑
i ui,j,k = 1 ∀j, k

Numbers occur in a block once
∑

(i,j)∈Bl
ui,j,k = 1 ∀Bl, k

Projected GD 60

Example Application: Solving a SUDOKU

All constraints are linear, i.e. can be expressed as A~u = ~1.

Find u with ui,j,k ∈ {0, 1} is a nonconvex constraint, so we relax it.

Convex relaxation: use the smallest convex set that contains the

nonconvex one, ui,j,k ∈ [0, 1]. Solve the convex problem and if the result

meets ui,j,k ∈ {0, 1}, it also solves the nonconvex problem

Projected GD 61

Example Application: Solving a SUDOKU

Nice thing for SUDOKU: There exists a solution to A~u = ~1

This means we may solve

û ∈ argmin
ui,j,k∈[0,1]

‖A~u− ~1‖22

Hope that ûi,j,k ∈ {0, 1}, in which case we solved the SUDOKU

Remarks:

Exact recovery guarantees (when is ûi,j,k ∈ {0, 1}) are an active

field of research.

Similar constructions can be done for many computer vision and

machine learning problems (labeling problems, segmentation, graph

cuts, or functional lifting)

Projected GD 62

Example application: Unmixing and sparse recovery

Hyperspectral imagery

z-direction: reflected energy depending on the wavelength of the

incoming light. It is material specific.
Projected GD 63

Example application: Unmixing and sparse recovery

Measured signals f

Find decomposition f = Au+ n

Dictionary of materials A, mixing coefficients u (sparse) and noise n

Projected GD 64

Example application: Unmixing and sparse recovery

Sparse recovery: Minimize a data fidelity term Hf (v) which is L-smooth,

such that v can be represented in a dictionary A, i.e. v = Au, and the

representing coefficients u are sparse.

Energy minimization approach:

min
u
Hf (Au) + α‖u‖1.

To apply gradient descent or projection algorithms, we need to

reformulate the problem

min
u
Hf (A(u1 − u2)) + α〈u1,1〉+ α〈u2,1〉, u1 ≥ 0, u2 ≥ 0

Projected GD 65

Example application: Unmixing and sparse recovery

The reformulation

min
u
Hf (Au) + α‖u‖1,

min
u1,u2

Hf (A(u1 − u2)) + α〈u1,1〉+ α〈u2,1〉, u1 ≥ 0, u2 ≥ 0

is unsatisfying because it doubles the size of the unknowns. Another way?

Projected GD 66

Outline

Gradient Descent

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Projected GD

Convergence

Proximal Gradient

Extensions

Proximal Gradient 67

From Proj to Prox

Remember the proof of

Theorem
Firm Nonexpansiveness The projection πC onto a nonempty closed

convex set C ⊂ Rn is firmly nonexpansive.

Let pu ∈ ∂δC(πC(u)), pv ∈ ∂δC(πC(v)) be subgradients

〈u− v, πC(u)− πC(v)〉 = 〈πC(u)− πC(v) + pu − pv, πC(u)− πC(v)〉

= ‖πC(u)− πC(v)‖2 + 〈pu − pv, πC(u)− πC(v)〉

≥ ‖πC(u)− πC(v)‖2

We did not use that pu and pv were subgradients of an indicator function.

The proof still works after replacing δC with an arbitrary convex function.

Proximal Gradient 68

Proximal Operator

Definition
Given a closed, proper, convex function E : Rn → R∪ {∞}, the mapping

proxE : Rn → Rn defined as

proxE(v) := argmin
u∈Rn

E(u) +
1

2
‖u− v‖2

is called the proximal operator or proximal mapping of E.

Existence: E(u)+ 1
2 ‖u− v‖

2 is closed, it has bounded sublevel sets

Uniqueness: E(u) + (1/2) ‖u− v‖2 is strongly convex

Generalization of the projection: Choose E = δC .

Proximal Gradient 69

Proximal Operator

Theorem
The proximal operator proxE for a closed, proper, convex function E is

firmly nonexpansive.

Course notes.

Consider minimizing an energy

E(u) = F (u) +G(u),

for proper, closed, convex E1 and E2 such that

F : Rn → R is L-smooth.

G : Rn → R ∪ {∞} has an easy-to-evaluate proximal operator

Intuition: we can generalize projected gradient by taking gradient descent

steps on F and proximal steps on G
Proximal Gradient 70

Proximal gradient algorithm

Definition
For a closed, proper, convex function G : Rn → R ∪ {∞} and a function

F ∈ C1(Rn), given an initial point u0 ∈ Rn and a step size τ , the

algorithm

uk+1 = proxτG
(
uk − τ∇F (uk)

)
, k = 0, 1, 2, . . . ,

is called the proximal gradient method.

Often referred to as forward-backward splitting or ISTA

For constant G, it reduces to gradient descent

For constant F , it is called proximal point algorithm

For G = δC , it reduces to projected gradient descent

Easy convergence analysis as fixed-point iteration of averaged operator
Proximal Gradient 71

Convergence analysis

Theorem
If F is L-smooth and τ ∈ (0, 2

L), the proximal gradient method

converges.

We have seen: prox-operator is firmly nonexpansive (averaged α = 1
2)

Theorem
If the proper, closed function G is m-strongly convex, then

proxτG : Rn → Rn is a contraction.

Corollary

If F is L-smooth, τ ∈ (0, 2
L), and either G or F is strongly convex, then

the proximal gradient method converges linearly, i.e.,

‖uk − u∗‖22 ∈ O(ck) for some c < 1.

Proximal Gradient 72

Sanity check and Examples

Sanity check: the algorithm converges to what? minimizer of E = G+ F

Examples of functions whose prox has a closed form:

Quadratic functions

f(x) =
1

2
‖Au− b‖2, proxτf (v) = (I + τATA)−1(v − τb)

Euclidean norm

f(x) = ‖x‖ , proxτf (v) =

(1− τ/ ‖v‖)v if ‖v‖ ≥ τ

0 otherwise.

`1-norm (cf. exercise sheet 3), “soft thresholding”

f(x) = ‖x‖1 ,
(
proxτf (v)

)
i
=

vi + τ if vi < −τ

0 if |vi| ≤ τ

vi − τ if vi > τ.

Proximal Gradient 73

Application sparse recovery

We can now solve

min
u
‖Au− f‖22 + α‖u‖1

without smoothing and without the introduction of additional variables

Proximal Gradient 74

Convergence Rates and Extensions

Similar to gradient descent the proximal gradient method on

E = F +G

for L-smooth F , E having a minimizer, and choosing the step size τ to

be constant converges with E(uk)− E(u∗) ∈ O(1/k).
Similar to gradient descent

accelerated to E(uk)− E(u∗) ∈ O(1/k2) with Nesterov’s scheme

line search: if we cannot find the Lipschitz constant for acceleration

For gradient projection, the analysis is in Introductory lectures on convex

optimization by Nesterov. For proximal gradient, in A Fast Iterative

Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Beck,

Teboulle, 2009.

Proximal Gradient 75

Accelerated proximal gradient

Pick some starting point v0 = u0, set t0 = 1, and iterate

1. Compute

uk+1 = prox 1
LG

(
vk − 1

L
∇F (vk)

)
2. Determine

tk+1 =
1 +

√
1 + 4t2k
2

,

3. Compute the extrapolation of uk+1 via

vk+1 = uk+1 +
tk − 1

tk+1
(uk+1 − uk)

See Chambolle, Dossal, On the Convergence of the Iterates of the ”Fast Iterative

Shrinkage/Thresholding Algorithm”, 2015, for more general algorithms.

Proximal Gradient 76

Accelerated gradient projection with line search

Let Qτ (u, v) = F (v) + 〈u− v,∇F (v)〉+ 1
2τ ‖u− v‖

2 +G(u) Pick

v0 = u0, β < 1, τ0 > 0 , set t0 = 1 and iterate

1. Find a suitable step size τk ≤ τk−1 via

τk = τk−1, uk+1 = proxτkG
(
vk − τk∇F (vk)

)
while E(uk+1) > Qτ (u

k+1, vk)

τk ← βτk, uk+1 ← proxτkG
(
vk − τk∇F (vk)

)
end

2. Determine

tk+1 =
1 +

√
1 + 4t2k
2

,

3. Compute the extrapolation of uk+1 via

vk+1 = uk+1 +
tk − 1

tk+1
(uk+1 − uk)

Proximal Gradient 77

What we can and cannot do yet

As we have seen

min
u

1

2
‖Au− f‖2 + α‖u‖1

does not pose a problem anymore.

But what about our TV-denoising model:

min
u

1

2
‖u− f‖2 + α‖Du‖1?

The problem itself is a proximal operator but not easy-to-evaluate. We

will see how to solve it next week.

Proximal Gradient 78

	Gradient Descent
	Convergence of Fixed-Point Iterations
	Contractions
	Averaged operators

	Back to GD
	L-smooth functions
	Convergence rates

	Projected GD
	Convergence

	Proximal Gradient
	Extensions

