Gradient Methods

V. Estellers

WS 2017

Gradient Methods

Outline

Gradient Descent

```
Convergence of Fixed-Point Iterations
    Contractions
    Averaged operators
Back to GD
    L-smooth functions
    Convergence rates
Projected GD
    Convergence
Proximal Gradient
    Extensions
```


Gradient Descent

Consider the unconstrained and smooth optimization problem

$$
u^{*} \in \arg \min _{u \in \mathbb{R}^{n}} E(u),
$$

for $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ proper, closed, and convex
Gradient descent is an optimization technique for the "simple" case

- $\operatorname{dom} E=\mathbb{R}^{n}$
- $E \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)$

Descent methods

Suppose we are at a point $u^{k} \in \mathbb{R}^{n}$ where $\nabla E\left(u^{k}\right) \neq 0$
Consider the ray $u(\tau)=u^{k}+\tau d$ for some direction $d \in \mathbb{R}^{n}$

$$
E(u(\tau))=E\left(u^{k}+\tau d\right)=E\left(u^{k}\right)+\tau\left\langle\nabla E\left(u^{k}\right), d\right\rangle+o(\tau)
$$

- $\tau\left\langle\nabla E\left(u^{k}\right), d\right\rangle$ dominates $o(\tau)$ for sufficiently small τ
- If $\left\langle\nabla E\left(u^{k}\right), d\right\rangle<0, d$ is a descent direction as, for suff. small τ,

$$
E(u(\tau))<E(u)
$$

Descent methods

Descent methods

The negative gradient is the steepest descent direction

$$
\underset{\|d\|=1}{\operatorname{argmin}}\left\{\left\langle d, \nabla E\left(u^{k}\right)\right\rangle\right\}=-\frac{\nabla E\left(u^{k}\right)}{\left\|\nabla E\left(u^{k}\right)\right\|}
$$

The gradient is orthogonal to the iso-contours $\gamma: I \rightarrow \mathbb{R}^{n}$

$$
\nabla E(\gamma(t)) \perp \dot{\gamma}(t), \quad t \in I
$$

Common choices of descent directions

- Scaled gradient: $d^{k}=-D^{k} \nabla E\left(u^{k}\right), D^{k} \succeq 0$
- Newton: $D^{k}=\left[\nabla^{2} E\left(u^{k}\right)\right]^{-1}$
- Quasi-Newton: $D^{k} \approx\left[\nabla^{2} E\left(u^{k}\right)\right]^{-1}$
- Steepest descent: $D^{k}=I$

Gradient descent

Definition

Given a function $E \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)$, an initial point $u^{0} \in \mathbb{R}^{n}$ and a sequence $\left(\tau_{k}\right) \subset \mathbb{R}$ of step sizes, the iteration

$$
u^{k+1}=u^{k}-\tau_{k} \nabla E\left(u^{k}\right), \quad k=0,1,2, \ldots,
$$

is called gradient descent.
Philosophy:
Generate a decreasing sequence $\left\{E\left(u^{k}\right)\right\}_{k=0}^{\infty}$
Each iteration is cheap, easy to code
Choosing τ_{k} to guarantee convergence is not trivial

Constant step size

Consider a constant step size $\tau^{k}=\tau$
Will gradient descent work for any convex function?

For any constant time step $\tau>0$, the starting point $u^{0}=\left(\frac{\tau}{2}\right)^{2}$ results in a gradient descent sequence $u^{0},-u^{0}, u^{0}, \ldots$

Intuition and requirements for constant step-size

Intuitively, an "infinitely quickly changing gradient" leads to "infinitely quickly changing" gradient descent updates

$$
u^{k+1}=u^{k}-\tau_{k} \nabla E\left(u^{k}\right), \quad k=0,1,2, \ldots,
$$

Need a stronger version of differentiability to prevent inf. quick changes
Definition: L-smooth function
If $E: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable and its first derivative is Liptschitz continuous, i.e. there exists an $L \geq 0$ such that

$$
\|\nabla E(u)-\nabla E(v)\| \leq L\|u-v\|, \forall u, v \in \mathbb{R}^{n}
$$

then E is called L-smooth

Lipschitz continuity

Reminder

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called Lipschitz continuous if for some $L \geq 0$

$$
\|f(x)-f(y)\| \leq L\|x-y\|, \quad \forall x, y \in \mathbb{R}^{n}
$$

If the function is differentiable, we can characterize Lipschitz continuous functions by the size of its gradient.

Theorem: Lipschitz continuity for differentiable functions A differentiable function $E: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is Lipschitz with parameter L if and only if $\|\nabla E(x)\|_{S^{\infty}} \leq L$ for all $x \in \mathbb{R}^{n}$.

Convergence Analysis

Conjecture

For any L-smooth proper convex function E (with a minimizer) there exists a step size τ such that the gradient descent algorithm converges

To prove this conjecture, we will use a general fixed-point Iteration for algorithms of the form

$$
u^{k+1}=G\left(u^{k}\right)
$$

Example:

$$
G(u)=u-\tau \nabla E(u) .
$$

If the iteration converges to \hat{u} and ∇E is continuous, then $\nabla E(\hat{u})=0$.

Outline

Gradient Descent

Convergence of Fixed-Point Iterations
Contractions
Averaged operators

Back to GD

L-smooth functions
Convergence rates
Projected GD
Convergence
Proximal Gradient
Extensions

Convergence of Fixed-Point Iterations

References:
Ryu and Boyd, Primer on Monotone Operator Methods, 2016.
Burger, Sawatzky, and Steidl, First Order Algorithms in Variational Image Processing, 2017.

Bauschke, and Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2011.

Fixed-point iterations with contractions

When does the fixed-point iteration

$$
\begin{equation*}
u^{k+1}=G\left(u^{k}\right) \tag{1}
\end{equation*}
$$

converge?
Banach fixed-point theorem
If the update rule $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a contraction, i.e. if there exists a
$L<1$ such that

$$
\|G(u)-G(v)\|_{2} \leq L\|u-v\|_{2}
$$

holds for all $u, v \in \mathbb{R}^{n}$, then the iteration (1) converges to the unique fixed-point \hat{u} of G. More precisely,

$$
\left\|u^{k}-\hat{u}\right\|_{2} \leq L^{k}\left\|u^{0}-\hat{u}\right\|_{2}
$$

Fixed-point iterations with averaged operators

G being a contraction is too restrictive in many cases
G being non-expansive, i.e. Lipschitz continuous with constant
$L=1$, is commonly true.

- any rotation G is non-expansive and has a fixed point (0)
- the iteration $u^{k+1}=G\left(u^{k}\right)$ does not converge

Averaged operator

An operator $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called averaged if there exists a non-expansive mapping $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and a constant $\alpha \in(0,1)$ such that

$$
G=\alpha I+(1-\alpha) H .
$$

Criteria for being averaged

Lemma about nonexpansive operators

Convex combinations as well as compositions of nonexpansive operators are nonexpansive.

Being averaged for smaller α
If a function $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is averaged with respect to $\left.\alpha \in\right] 0,1[$, then it is also averaged with respect to any other parameter $\tilde{\alpha} \in] 0, \alpha[$.

Composition of averaged operators
If $G_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $G_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are averaged, then $G_{2} \circ G_{1}$ is also averaged.

Proofs: Notes

Criteria for being averaged

Firmly non-expansive
A function $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called firmly nonexpansive, if for all $u, v \in \mathbb{R}^{n}$ it holds that

$$
\|G(u)-G(v)\|_{2}^{2} \leq\langle G(u)-G(v), u-v\rangle
$$

Firmly nonexpansive operators are averaged
A function $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is firmly nonexpansive if and only if G is averaged with $\alpha=\frac{1}{2}$.

Proof: Notes

Convergence for averaged operators

Krasnosel'skii-Mann Theorem
If the operator $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is averaged and has a fixed-point, then the iteration

$$
u^{k+1}=G\left(u^{k}\right)
$$

converges to a fixed point of G for any starting point $u^{0} \in \mathbb{R}^{n}$.
Proof: Notes

Short summary

We have seen:
An operator G is called a contraction if it is Lipschitz continuous with $L<1$.

Contractions have a unique fixed-point and their fixed-point iteration converges with $\mathscr{O}\left(L^{k}\right)$.
An operator R is called a nonexpansive if it is Lipschitz continuous with $L=1$.

An operator G is called a averaged if $G=\alpha I+(1-\alpha) R$ for some nonexpansive operator R and $\alpha \in(0,1)$.

If an averaged operator has a fixed-point, then the fixed-point
iteration converges. The convergence rate states that
$\sum_{k=1}^{n}\left\|G\left(u^{k}\right)-u^{k}\right\|_{2} \leq C$ for some constant C.
Firmly nonexpansive operators are the same as averaged operators with $\alpha=\frac{1}{2}$.

Relation to gradient descent

We now have two loose ends:

- a conjecture about the convergence of the gradient descent iteration
- theorem that states the convergence of a fixed-point iteration for averaged operators.
we need to write gradient descent as an averaged operator

Baillon-Haddad theorem

A continuously differentiable convex function $E: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is L-smooth if and only if $\frac{1}{L} \nabla E$ is firmly nonexpansive, i.e.

$$
\langle\nabla E(u)-\nabla E(v), u-v\rangle \geq \frac{1}{L}\|\nabla E(u)-\nabla E(v)\|_{2}^{2}
$$

for all $u, v \in \mathbb{R}^{n}$.
Proof: See Nesterov, Introductory Lectures on Convex Optimization, Theorem 2.1.5.

Outline

Gradient Descent
Convergence of Fixed-Point Iterations
Contractions
Averaged operators
Back to GD
L-smooth functions
Convergence rates
Projected GD
Convergence
Proximal Gradient
Extensions
Back to GD 22

Convergence of gradient descent

Gradient descent as an averaged operator

If $E: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has a minimizer, is convex and L-smooth, and $\left.\tau \in\right] 0, \frac{2}{L}[$, then the gradient descent iteration converges to a minimizer.

Sufficient: $G(u)=u-\tau \nabla E(u)$ is averaged.
We know $\frac{1}{L} \nabla E$ is averaged with $\alpha=1 / 2$, i.e., $\frac{1}{L} \nabla E=\frac{1}{2}(I+T)$ for a non-expansive T.

It hold that

$$
G(u)=u-\tau L \frac{1}{L} \nabla E(u)=\left(1-\frac{L \tau}{2}\right) I+\frac{L \tau}{2}(-T)
$$

If T is non-expansive, $(-T)$ is non-expansive, too.
\Rightarrow For $\tau \in] 0, \frac{2}{L}[, G$ is averaged.

Convergence rate

How fast does gradient descent converge?
Theory of averaged operators shows $\sum_{k}\left\|\nabla E\left(u^{k}\right)\right\|_{2}^{2}$ is bounded.
Careful analysis shows that for L-smooth functions with $\tau \in\left(0, \frac{2}{L}\right)$:

$$
E\left(u^{k+1}\right) \leq E\left(u^{k}\right) \quad E\left(u^{k}\right)-E\left(u^{*}\right) \in \mathcal{O}(1 / k)
$$

It is not possible to get a contraction to speed up convergence because a contraction would imply the existence of a unique fixed-point.

Reminder
$\mathcal{O}(g)=\left\{f\left|\exists C \geq 0, \exists n_{0} \in \mathbb{N}_{0}, \forall n \geq n_{0}:|f(n)| \leq C\right| g(n) \mid\right\}$

Strongly-convex + L-smooth

Gradient descent as an averaged operator
If $E: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is m-strongly convex and L-smooth, and $\left.\tau \in\right] 0, \frac{2}{m+L}[$, then the gradient descent iteration converges to the unique minimizer u^{*} of E with $\left\|u^{k}-u^{*}\right\| \leq c^{k}\left\|u^{0}-u^{*}\right\|$.

Proof on the Notes.

Strong convexity

Definition: strong convexity
A function $E: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is called strongly convex with constant m or m-strongly convex if $E(u)-\frac{m}{2}\|u\|_{2}^{2}$ is still convex.

Theorem: characterization of m-strongly convex functions ${ }^{1}$ For $E \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)$ the following are equivalent:

1. $E(u)-\frac{m}{2}\|u\|^{2}$ is convex
2. $E(v) \geq E(u)+\langle\nabla E(u), v-u\rangle+\frac{m}{2}\|v-u\|^{2}$
3. $\langle\nabla E(u)-\nabla E(v), u-v\rangle \geq m\|u-v\|^{2}$
4. $\nabla^{2} E(u) \succeq m \cdot I$, if $E \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$

[^0] Back to GD

Optimal convergence rates

In computer vision, m -strongly convex L-smooth energies are very rare!
Can one do better than the $\mathcal{O}(1 / k)$ in the L-smooth case?
Famous analysis by Nesterov, (Th 2.1.7 and Th2.1.13) for first order methods of the form:

$$
u^{k+1} \in u^{0}+\operatorname{span}\left\{\nabla E\left(u^{0}\right), \ldots, \nabla E\left(u^{k}\right)\right\}
$$

If E can be any convex L-smooth function
then no first order method can have a worst-case complexity less than $\mathcal{O}\left(1 / k^{2}\right)$.
and E is m-strongly convex, then no first order method can have a worst-case complexity less than $\mathcal{O}\left(\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2 k}\right)$ for $\kappa=L / m$.

Obtaining optimal convergence rates

Nesterov's Accelerated Gradient Descent

Pick some starting point $v^{0}=u^{0}$, and iterate

1. Compute

$$
u^{k+1}=v^{k}-\frac{1}{L} \nabla E\left(v^{k}\right)
$$

2. Find the next $\alpha \in] 0,1$ [by solving

$$
\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+\frac{m}{L} \alpha_{k+1}
$$

3. Compute the extrapolation of u^{k+1} via

$$
\begin{aligned}
\beta_{k} & =\frac{\alpha_{k}\left(1-\alpha_{k}\right)}{\alpha_{k}^{2}+\alpha_{k+1}} \\
v^{k+1} & =u^{k+1}+\beta_{k}\left(u^{k+1}-u^{k}\right)
\end{aligned}
$$

Backtracking line search

Sometimes Lipschitz constant L not known
The convergence analysis shows that one really only needs

$$
E\left(u^{k+1}\right) \leq E\left(u^{k}\right)-\beta_{k}\left\|\nabla E\left(u^{k}\right)\right\|^{2}
$$

for some $\beta_{k} \geq \beta>0$.
Idea: Pick $\alpha \in(0,0.5), \beta \in(0,1)$
Then determine τ_{k} each iteration by:

$$
\begin{aligned}
& \tau_{k} \leftarrow 1 \\
& \text { while } E\left(u^{k}-\tau_{k} \nabla E\left(u^{k}\right)\right)>E\left(u^{k}\right)-\alpha \tau_{k}\left\|\nabla E\left(u^{k}\right)\right\|^{2} \\
& \qquad \tau_{k} \leftarrow \beta \tau_{k} \\
& \text { end }
\end{aligned}
$$

Backtracking line search

Line search...
... often leads to improved convergence in practice
... has a (slight) overhead each iteration
... has the same convergence rate as with constant steps
For a backtracking line search scheme for Nesterov's accelerated gradient method please see Introductory Lectures on Convex Optimization, page 76, scheme (2.2.6).

Remark: Other strategies for linear search exists, e.g.

$$
\tau_{k}=\arg \min _{\tau} E\left(u^{k}-\tau \nabla E\left(u^{k}\right)\right)
$$

Application: TV image denoising

Lets consider the applications of image denoising:

Via energy minimization: Let D_{1} and D_{2} be finite difference operators for the partial derivatives. Determine

$$
\begin{aligned}
& \hat{u} \in \arg \min _{u} \underbrace{\frac{\lambda}{2}\|u-f\|_{2}^{2}}_{=H_{f}(u) \text { stay close to input }}+\underbrace{\sum_{x \in \Omega} \sqrt{\left(D_{1} u(x)\right)^{2}+\left(D_{2} u(x)\right)^{2}}}_{=T V(u) \text { suppress noise }}
\end{aligned}
$$

Application: TV image denoising

Problem: The so called total variation regularization

$$
T V(u)=\sum_{x \in \Omega} \sqrt{\left(D_{1} u(x)\right)^{2}+\left(D_{2} u(x)\right)^{2}}
$$

is not differentiable!
Idea: Approximate it with a differentiable function

$$
T V_{\epsilon}(u)=\sum_{x \in \Omega} \phi \sqrt{\left(D_{1} u(x)\right)^{2}+\left(D_{2} u(x)\right)^{2}+\epsilon^{2}}
$$

Exercises: Our denoising model is L-smooth for

$$
L=\lambda+\frac{\|D\|_{S^{\infty}}}{\epsilon}
$$

where $\|D\|_{S^{\infty}}$ is the spectral norm of a matrix. It is defined as the square root of largest eigenvalue of $D^{T} D$.
We expect the convergence to be better for large ϵ, but we expect $T V(u) \approx T V_{\epsilon}(u)$ only for small $\epsilon \ldots$

Image denoising

$$
\varepsilon=0.1
$$

$$
\varepsilon=0.01
$$

\rightarrow Motivation for non-smooth optimization!

Convergence, $\tau=2 /(m+L)$

Convergence, backtracking line search

Image inpainting

$$
f \in \mathbb{R}^{N}
$$

$$
u^{*} \in \underset{u}{\operatorname{argmin}} \frac{\lambda}{2}\|m \cdot(u-f)\|^{2}+T V_{\epsilon}(u)
$$

Energy is not strongly convex, but L-smooth
Sublinear upper bound on convergence speed

Image Inpainting

50\% missing pixels

Back to GD

50\% missing pixels

70\% missing pixels

Back to GD

70\% missing pixels

90\% missing pixels

90\% missing pixels

Concluding remarks and outlook

GD is still popular to date due to its simplicity and flexibility Various theoretically optimal extensions (Heavy-ball acceleration, Nesterov momentum) exist

Envelope approach: many advanced algorithms for non-smooth optimization are just gradient descent on a particular (albeit complicated) energy

Endless of variants and modifications of descent methods conjugate, accelerated, preconditioned, projected, conditional, mirrored, stochastic, coordinate, continuous, online, variable metric, subgradient, proximal, ...

Subgradient descent in one slide

We have seen in the exercises, that even for functions that are not L-smooth, gradient descent with a small step size reduces the energy up to some point where it starts oscillating.
Possible convergent variant: Subgradient descent

$$
u^{k+1}=u^{k}-\tau_{k} p^{k}, \quad \text { for any } p^{k} \in \partial E\left(u^{k}\right) .
$$

If it holds that
E has a minimizer
E is Lipschitz continuous

$$
\tau_{k} \rightarrow 0, \text { but } \sum_{k=1}^{n} \tau_{k} \rightarrow \infty, \text { e.g. } \tau_{k}=1 / k
$$

then the subgradient descent iteration converges with

$$
E\left(u^{k}\right)-E\left(u^{*}\right) \in \mathcal{O}(1 / \sqrt{k})
$$

Summary

This lecture is about

$$
u^{*} \in \arg \min _{u \in \mathbb{R}^{n}} E(u)
$$

for $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ proper, closed, convex.

Gradient descent:

$\operatorname{dom} E=\mathbb{R}^{n}$
For L-smooth E (that has a minimizer)

- energy convergence in $\mathcal{O}(1 / k)$ for constant step sizes
- energy convergence in $\mathcal{O}\left(1 / k^{2}\right)$ for Nesterov's method.

For L-smooth m-strongly convex E : energy and iterate convergence in $\mathcal{O}\left(c^{k}\right)$
Line search strategies for unknown Lipschitz constant L.

Outline

Gradient Descent

Convergence of Fixed-Point Iterations
Contractions
Averaged operators
Back to GD
L-smooth functions
Convergence rates
Projected GD
Convergence
Proximal Gradient
Extensions

Projected GD

Gradient projection

Type of problem:

$$
\begin{equation*}
u^{*} \in \arg \min _{u \in C} E(u) \tag{2}
\end{equation*}
$$

for an L-smooth E, and a nonempty, closed, convex set C.

Definition

Projection For a (nonempty) closed convex set $C \subset \mathbb{R}^{n}$,

$$
\pi_{C}(v)=\underset{u \in C}{\operatorname{argmin}}\|u-v\|_{2}^{2}
$$

is called the projection of v onto the set C.

Projections

Theorem

Existence and Uniqueness of the Projection For any (nonempty) closed convex set $C \subset \mathbb{R}^{n}$ and any v the projection $\pi_{C}(v)$ exists and is single valued.

Proof: Notes.

Abuse of notation: Although $\pi_{C}(v)$ is, by definition, a set, we usually identify $\pi_{C}(v)$ with the single element in the set.

Example projections

What is the projection of $v \in \mathbb{R}^{n}$ onto

$$
\begin{aligned}
& C=\left\{u \in \mathbb{R}^{n} \mid\|u\|_{2} \leq 1\right\} ? \\
& C=\left\{u \in \mathbb{R}^{n}\left|\|u\|_{\infty}:=\max _{i}\right| u_{i} \mid \leq 1\right\} ? \\
& C=\left\{u \in \mathbb{R}^{n} \mid u_{i} \in[a, b]\right\} ? \\
& C=\left\{u \in \mathbb{R}^{n} \mid u_{i} \geq a\right\} ? \\
& C=\left\{u \in \mathbb{R}^{n}\left|\|u\|_{1}=\sum_{i}\right| u_{i} \mid\right\} ?
\end{aligned}
$$

Intuition on gradient projection

Let E be L-smooth convex function and C a nonempty, closed, convex set. Consider a problem

$$
\begin{equation*}
u^{*} \in \arg \min _{u \in C} E(u) \tag{3}
\end{equation*}
$$

We know that, without the constraint $u \in C$, gradient descent works and looks like:

$$
u^{k+1}=u^{k}-\tau^{k} \nabla E\left(u^{k}\right)
$$

The problem with GD is that the update might violate $u^{k+1} \in C$
Gradient projection solves this by projecting every iteration back to the feasible set

$$
u^{k+1}=\pi_{C}\left(u^{k}-\tau^{k} \nabla E\left(u^{k}\right)\right)
$$

Intuition on gradient projection

Toy problem $\min _{\left|u_{i}\right| \leq 1}\|u-f\|_{2}^{2}$

Intuition on gradient projection

Toy problem $\min _{\left|u_{i}\right| \leq 1}\|u-f\|_{2}^{2}$

Intuition on gradient projection

Toy problem $\min _{\left|u_{i}\right| \leq 1}\|u-f\|_{2}^{2}$

Intuition on gradient projection

Toy problem $\min _{\left|u_{i}\right| \leq 1}\|u-f\|_{2}^{2}$

Intuition on gradient projection

Toy problem $\min _{\left|u_{i}\right| \leq 1}\|u-f\|_{2}^{2}$

Intuition on gradient projection

Toy problem $\min _{\left|u_{i}\right| \leq 1}\|u-f\|_{2}^{2}$

Gradient Projection Algorithm

Definition

Gradient Projection Algorithm Let $C \subset \mathbb{R}^{n}$ be a nonempty closed convex set and let $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \in C^{1}\left(\mathbb{R}^{n}\right)$. Then, for $u^{0} \in C$

$$
u^{k+1}=\pi_{C}\left(u^{k}-\tau \nabla E\left(u^{k}\right)\right)
$$

is called the gradient projection algorithm.
Before we spend time implementing it, we need to know when, how, and why it works, i.e., for which E and τ the fixed-point iteration

$$
G(u)=\pi_{C}(u-\tau \nabla E(u))
$$

converges

Projected GD as a fixed-point iteration

Strategy: show that the fixed point iteration

$$
G(u)=\pi_{C}(u-\tau \nabla E(u))
$$

converges because G is an averaged operator

From the analysis of gradient descent, we know:

1. for $\tau \in\left(0, \frac{2}{L}\right)$ the operator $G_{1}(u)=u-\tau \nabla E(u)$ is averaged
2. the composition of averaged operators is averaged

If we can show that π_{C} is averaged, we are done

Properties of the projection

Theorem

Firm Nonexpansiveness The projection π_{C} onto a nonempty closed convex set $C \subset \mathbb{R}^{n}$ is firmly nonexpansive, i.e. it meets

$$
\left\langle u-v, \pi_{C}(u)-\pi_{C}(v)\right\rangle \geq\left\|\pi_{C}(u)-\pi_{C}(v)\right\|^{2} \quad \forall u, v \in \mathbb{R}^{n}
$$

Remember that a firmly non-expansive operator is averaged with $\alpha=\frac{1}{2}$

Corollary

For an L-smooth energy E that has a minimizer and a choice $\tau \in] 0, \frac{2}{L}[$ the gradient projection converges with rate rate is $\mathcal{O}(1 / k)$
$\mathcal{O}(1 / k)$ is suboptimal, a generalized version with $\mathcal{O}\left(1 / k^{2}\right)$ comes later

Convergence of the projected gradient descent

Recall: The composition of a non-expansive operator with a contraction is a contraction
This means that our gradient descent result carries over:
Theorem
For E being L-smooth and m-strongly convex and $\tau \in\left(0, \frac{2}{L}\right)$ the gradient projection algorithm converges to the (unique) global minimizer u^{*} with $E\left(u^{k}\right)-E\left(u^{*}\right) \in \mathcal{O}\left(c^{k}\right)$ with $c<1$

Example Application: Solving a SUDOKU

Find the missing numbers such that each block, each row, and each column contains each number 1-4 only once

Example Application: Solving a SUDOKU

Find the missing numbers such that each block, each row, and each column contains each number 1-4 only once

2	4	1	3
1	3	2	4
4	1	3	2
3	2	4	1

Example Application: Solving a SUDOKU

Find the missing numbers such that each block, each row, and each column contains each number 1-4 only once

2	4	1	3
1	3	2	4
4	1	3	2
3	2	4	1

We can do this with convex optimization?

Example Application: Solving a SUDOKU

Find the missing numbers such that each block, each row, and each column contains each number 1-4 only once

2	4	1	3
1	3	2	4
4	1	3	2
3	2	4	1

We can do this with convex optimization?
Idea: Identify the number i with

$$
e_{i}=(0, \cdots, 0, \underbrace{1}_{i^{t h} \text { position }}, 0, \cdots, 0)^{T} .
$$

Example Application: Solving a SUDOKU

For the 4×4 case, look for a matrix $u \in\{1,2,3,4\}^{4 \times 4}$ such that $u_{i, j}=f_{i, j}$ for the entries $f_{i, j}$ that are given

Reformulation: find $\boldsymbol{u} \in\{0,1\}^{4 \times 4 \times 4}$, where $\boldsymbol{u}_{i, j, k}=1$ means $u_{i, j}=k$, subject to the constraints

Rule	Implication	
One number for each blank spot	$\sum_{k} \boldsymbol{u}_{i, j, k}=1$	$\forall i, j$
Respect given entries	$\boldsymbol{u}_{i, j, k}=1$ if $f_{i, j}=k$	
Numbers occur in a row once	$\sum_{j} \boldsymbol{u}_{i, j, k}=1$	$\forall i, k$
Numbers occur in a column once	$\sum_{i} \boldsymbol{u}_{i, j, k}=1$	$\forall j, k$
Numbers occur in a block once	$\sum_{(i, j) \in B_{l}} \boldsymbol{u}_{i, j, k}=1$	$\forall B_{l}, k$

Example Application: Solving a SUDOKU

All constraints are linear, i.e. can be expressed as $A \overrightarrow{\boldsymbol{u}}=\overrightarrow{\mathbf{1}}$. SUDOKU rules in matrix form
The scalar product with all variants of the following vectors needs to be one.

Only one number from 1-4 should be selected

In each block each number may only appear once

In each column each number may only appear once

In each row each number may only appear once

Find \boldsymbol{u} with $\boldsymbol{u}_{i, j, k} \in\{0,1\}$ is a nonconvex constraint, so we relax it.
Convex relaxation: use the smallest convex set that contains the nonconvex one, $\boldsymbol{u}_{i, j, k} \in[0,1]$. Solve the convex problem and if the result meets $\boldsymbol{u}_{i, j, k} \in\{0,1\}$, it also solves the nonconvex problem

Example Application: Solving a SUDOKU

Nice thing for SUDOKU: There exists a solution to $A \overrightarrow{\boldsymbol{u}}=\overrightarrow{\mathbf{1}}$
This means we may solve

$$
\hat{\boldsymbol{u}} \in \underset{\boldsymbol{u}_{i, j, k} \in[0,1]}{\operatorname{argmin}}\|A \overrightarrow{\boldsymbol{u}}-\overrightarrow{\mathbf{1}}\|_{2}^{2}
$$

Hope that $\hat{\boldsymbol{u}}_{i, j, k} \in\{0,1\}$, in which case we solved the SUDOKU
Remarks:
Exact recovery guarantees (when is $\hat{\boldsymbol{u}}_{i, j, k} \in\{0,1\}$) are an active field of research.

Similar constructions can be done for many computer vision and machine learning problems (labeling problems, segmentation, graph cuts, or functional lifting)

Example application: Unmixing and sparse recovery

Hyperspectral imagery

z-direction: reflected energy depending on the wavelength of the incoming light. It is material specific.
Projected GD

Example application: Unmixing and sparse recovery

Measured signals f
Find decomposition $f=A u+n$
Dictionary of materials A, mixing coefficients u (sparse) and noise n

Example application: Unmixing and sparse recovery

Sparse recovery: Minimize a data fidelity term $H_{f}(v)$ which is L-smooth, such that v can be represented in a dictionary A, i.e. $v=A u$, and the representing coefficients u are sparse.

Energy minimization approach:

$$
\min _{u} H_{f}(A u)+\alpha\|u\|_{1} .
$$

To apply gradient descent or projection algorithms, we need to reformulate the problem

$$
\min _{u} H_{f}\left(A\left(u_{1}-u_{2}\right)\right)+\alpha\left\langle u_{1}, \mathbf{1}\right\rangle+\alpha\left\langle u_{2}, \mathbf{1}\right\rangle, \quad u_{1} \geq 0, u_{2} \geq 0
$$

Example application: Unmixing and sparse recovery

color image illustration

endmember "road"

endmember "roof"

endmember "trees"

The reformulation

$$
\begin{aligned}
& \min _{u} H_{f}(A u)+\alpha\|u\|_{1} \\
& \min _{u_{1}, u_{2}} H_{f}\left(A\left(u_{1}-u_{2}\right)\right)+\alpha\left\langle u_{1}, \mathbf{1}\right\rangle+\alpha\left\langle u_{2}, \mathbf{1}\right\rangle, \quad u_{1} \geq 0, u_{2} \geq 0
\end{aligned}
$$

is unsatisfying because it doubles the size of the unknowns. Another way?

Outline

Gradient Descent

Convergence of Fixed-Point Iterations Contractions
Averaged operators

Back to GD

L-smooth functions
Convergence rates
Projected GD
Convergence
Proximal Gradient
Extensions

Proximal Gradient

From Proj to Prox

Remember the proof of
Theorem
Firm Nonexpansiveness The projection π_{C} onto a nonempty closed convex set $C \subset \mathbb{R}^{n}$ is firmly nonexpansive.
Let $p_{u} \in \partial \delta_{C}\left(\pi_{C}(u)\right), p_{v} \in \partial \delta_{C}\left(\pi_{C}(v)\right)$ be subgradients

$$
\begin{aligned}
\left\langle u-v, \pi_{C}(u)-\pi_{C}(v)\right\rangle & =\left\langle\pi_{C}(u)-\pi_{C}(v)+p_{u}-p_{v}, \pi_{C}(u)-\pi_{C}(v)\right\rangle \\
& =\left\|\pi_{C}(u)-\pi_{C}(v)\right\|^{2}+\left\langle p_{u}-p_{v}, \pi_{C}(u)-\pi_{C}(v)\right\rangle \\
& \geq\left\|\pi_{C}(u)-\pi_{C}(v)\right\|^{2}
\end{aligned}
$$

We did not use that p_{u} and p_{v} were subgradients of an indicator function. The proof still works after replacing δ_{C} with an arbitrary convex function.

Proximal Operator

Definition

Given a closed, proper, convex function $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$, the mapping $\operatorname{prox}_{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined as

$$
\operatorname{prox}_{E}(v):=\underset{u \in \mathbb{R}^{n}}{\operatorname{argmin}} E(u)+\frac{1}{2}\|u-v\|^{2}
$$

is called the proximal operator or proximal mapping of E.

Existence: $E(u)+\frac{1}{2}\|u-v\|^{2}$ is closed, it has bounded sublevel sets
Uniqueness: $E(u)+(1 / 2)\|u-v\|^{2}$ is strongly convex
Generalization of the projection: Choose $E=\delta_{C}$.

Proximal Operator

Theorem

The proximal operator prox ${ }_{E}$ for a closed, proper, convex function E is firmly nonexpansive.

Course notes.
Consider minimizing an energy

$$
E(u)=F(u)+G(u),
$$

for proper, closed, convex E_{1} and E_{2} such that
$F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is L-smooth.
$G: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ has an easy-to-evaluate proximal operator
Intuition: we can generalize projected gradient by taking gradient descent steps on F and proximal steps on G

Proximal gradient algorithm

Definition

For a closed, proper, convex function $G: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ and a function $F \in \mathcal{C}^{1}\left(\mathbb{R}^{n}\right)$, given an initial point $u^{0} \in \mathbb{R}^{n}$ and a step size τ, the algorithm

$$
u^{k+1}=\operatorname{prox}_{\tau G}\left(u^{k}-\tau \nabla F\left(u^{k}\right)\right), \quad k=0,1,2, \ldots,
$$

is called the proximal gradient method.
Often referred to as forward-backward splitting or ISTA
For constant G, it reduces to gradient descent
For constant F, it is called proximal point algorithm
For $G=\delta_{C}$, it reduces to projected gradient descent
Easy convergence analysis as fixed-point iteration of averaged operator

Convergence analysis

Theorem

If F is L-smooth and $\tau \in\left(0, \frac{2}{L}\right)$, the proximal gradient method converges.

We have seen: prox-operator is firmly nonexpansive (averaged $\alpha=\frac{1}{2}$)

Theorem
If the proper, closed function G is m-strongly convex, then $\operatorname{prox}_{\tau G}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a contraction.

Corollary
If F is L-smooth, $\tau \in\left(0, \frac{2}{L}\right)$, and either G or F is strongly convex, then the proximal gradient method converges linearly, i.e., $\left\|u^{k}-u^{*}\right\|_{2}^{2} \in \mathcal{O}\left(c^{k}\right)$ for some $c<1$.

Sanity check and Examples

Sanity check: the algorithm converges to what? minimizer of $E=G+F$

Examples of functions whose prox has a closed form:

Quadratic functions

$$
f(x)=\frac{1}{2}\|A u-b\|^{2}, \quad \operatorname{prox}_{\tau f}(v)=\left(I+\tau A^{T} A\right)^{-1}(v-\tau b)
$$

Euclidean norm

$$
f(x)=\|x\|, \quad \operatorname{prox}_{\tau f}(v)= \begin{cases}(1-\tau /\|v\|) v & \text { if }\|v\| \geq \tau \\ 0 & \text { otherwise }\end{cases}
$$

ℓ_{1}-norm (cf. exercise sheet 3), "soft thresholding"

$$
f(x)=\|x\|_{1}, \quad\left(\operatorname{prox}_{\tau f}(v)\right)_{i}= \begin{cases}v_{i}+\tau & \text { if } v_{i}<-\tau \\ 0 & \text { if }\left|v_{i}\right| \leq \tau \\ v_{i}-\tau & \text { if } v_{i}>\tau\end{cases}
$$

Application sparse recovery

We can now solve

$$
\min _{u}\|A u-f\|_{2}^{2}+\alpha\|u\|_{1}
$$

without smoothing and without the introduction of additional variables

Convergence Rates and Extensions

Similar to gradient descent the proximal gradient method on

$$
E=F+G
$$

for L-smooth F, E having a minimizer, and choosing the step size τ to be constant converges with $E\left(u^{k}\right)-E\left(u^{*}\right) \in \mathcal{O}(1 / k)$.
Similar to gradient descent
accelerated to $E\left(u^{k}\right)-E\left(u^{*}\right) \in \mathcal{O}\left(1 / k^{2}\right)$ with Nesterov's scheme
line search: if we cannot find the Lipschitz constant for acceleration
For gradient projection, the analysis is in Introductory lectures on convex optimization by Nesterov. For proximal gradient, in A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Beck, Teboulle, 2009.

Accelerated proximal gradient

Pick some starting point $v^{0}=u^{0}$, set $t_{0}=1$, and iterate

1. Compute

$$
u^{k+1}=\operatorname{prox}_{\frac{1}{L} G}\left(v^{k}-\frac{1}{L} \nabla F\left(v^{k}\right)\right)
$$

2. Determine

$$
t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}
$$

3. Compute the extrapolation of u^{k+1} via

$$
v^{k+1}=u^{k+1}+\frac{t_{k}-1}{t_{k+1}}\left(u^{k+1}-u^{k}\right)
$$

See Chambolle, Dossal, On the Convergence of the Iterates of the "Fast Iterative Shrinkage/Thresholding Algorithm", 2015, for more general algorithms.

Accelerated gradient projection with line search

Let $Q_{\tau}(u, v)=F(v)+\langle u-v, \nabla F(v)\rangle+\frac{1}{2 \tau}\|u-v\|^{2}+G(u)$ Pick $v^{0}=u^{0}, \beta<1, \tau_{0}>0$, set $t_{0}=1$ and iterate

1. Find a suitable step size $\tau_{k} \leq \tau_{k-1}$ via

$$
\begin{aligned}
& \tau_{k}=\tau_{k-1}, \quad u^{k+1}=\operatorname{prox}_{\tau_{k} G}\left(v^{k}-\tau_{k} \nabla F\left(v^{k}\right)\right) \\
& \text { while } E\left(u^{k+1}\right)>Q_{\tau}\left(u^{k+1}, v^{k}\right) \\
& \qquad \tau_{k} \leftarrow \beta \tau_{k}, \quad u^{k+1} \leftarrow \operatorname{prox}_{\tau_{k} G}\left(v^{k}-\tau_{k} \nabla F\left(v^{k}\right)\right) \\
& \text { end }
\end{aligned}
$$

2. Determine

$$
t_{k+1}=\frac{1+\sqrt{1+4 t_{k}^{2}}}{2}
$$

3. Compute the extrapolation of u^{k+1} via

$$
v^{k+1}=u^{k+1}+\frac{t_{k}-1}{t_{k+1}}\left(u^{k+1}-u^{k}\right)
$$

What we can and cannot do yet

As we have seen

$$
\min _{u} \frac{1}{2}\|A u-f\|^{2}+\alpha\|u\|_{1}
$$

does not pose a problem anymore.

But what about our TV-denoising model:

$$
\min _{u} \frac{1}{2}\|u-f\|^{2}+\alpha\|D u\|_{1} ?
$$

The problem itself is a proximal operator but not easy-to-evaluate. We will see how to solve it next week.

[^0]: ${ }^{1}$ Ryu, Boyd, A Primer on Monotone Operator Methods, Appendix A

