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Gradient Descent

Consider the unconstrained and smooth optimization problem

u∗ ∈ arg min
u∈Rn

E(u),

for E : Rn → R ∪ {∞} proper, closed, and convex

Gradient descent is an optimization technique for the “simple” case

– dom E = Rn

– E ∈ C1(Rn)
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Descent methods

Suppose we are at a point uk ∈ Rn where ∇E(uk) 6= 0

Consider the ray u(τ) = uk + τd for some direction d ∈ Rn

E(u(τ)) = E(uk + τd) = E(uk) + τ〈∇E(uk), d〉+ o(τ)

– τ〈∇E(uk), d〉 dominates o(τ) for sufficiently small τ

– If 〈∇E(uk), d〉 < 0, d is a descent direction as, for suff. small τ ,

E(u(τ)) < E(u)
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Descent methods

∇E(uk)

−∇E(uk)

uk − α∇E(uk)

uk − β∇E(uk)

uk − γd
d

uk − δd
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Descent methods

The negative gradient is the steepest descent direction

argmin
‖d‖=1

{
〈d,∇E(uk)〉

}
= − ∇E(uk)

‖∇E(uk)‖

The gradient is orthogonal to the iso-contours γ : I → Rn

∇E(γ(t)) ⊥ γ̇(t), t ∈ I

Common choices of descent directions

– Scaled gradient: dk = −Dk∇E(uk), Dk � 0

– Newton: Dk = [∇2E(uk)]−1

– Quasi-Newton: Dk ≈ [∇2E(uk)]−1

– Steepest descent: Dk = I
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Gradient descent

Definition
Given a function E ∈ C1(Rn), an initial point u0 ∈ Rn and a sequence

(τk) ⊂ R of step sizes, the iteration

uk+1 = uk − τk∇E(uk), k = 0, 1, 2, . . . ,

is called gradient descent.

Philosophy:

Generate a decreasing sequence {E(uk)}∞k=0

Each iteration is cheap, easy to code

Choosing τk to guarantee convergence is not trivial
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Constant step size

Consider a constant step size τk = τ

Will gradient descent work for any convex function?
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For any constant time step τ > 0, the starting point u0 =
(
τ
2

)2
results in a gradient descent sequence u0,−u0, u0, . . .
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Intuition and requirements for constant step-size

Intuitively, an ”infinitely quickly changing gradient” leads to ”infinitely

quickly changing” gradient descent updates

uk+1 = uk − τk∇E(uk), k = 0, 1, 2, . . . ,

Need a stronger version of differentiability to prevent inf. quick changes

Definition: L-smooth function
If E : Rn → R is continuously differentiable and its first derivative is

Liptschitz continuous, i.e. there exists an L ≥ 0 such that

‖∇E(u)−∇E(v)‖ ≤ L ‖u− v‖ ,∀u, v ∈ Rn,

then E is called L-smooth
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Lipschitz continuity

Reminder
f : Rn → Rm is called Lipschitz continuous if for some L ≥ 0

‖f(x)− f(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Rn.

If the function is differentiable, we can characterize Lipschitz continuous

functions by the size of its gradient.

Theorem: Lipschitz continuity for differentiable functions

A differentiable function E : Rn → Rm is Lipschitz with parameter L if

and only if ‖∇E(x)‖S∞ ≤ L for all x ∈ Rn.
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Convergence Analysis

Conjecture

For any L-smooth proper convex function E (with a minimizer) there

exists a step size τ such that the gradient descent algorithm converges

To prove this conjecture, we will use a general fixed-point Iteration for

algorithms of the form

uk+1 = G(uk)

Example:

G(u) = u− τ∇E(u).

If the iteration converges to û and ∇E is continuous, then ∇E(û) = 0.
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Convergence of
Fixed-Point Iterations

References:

Ryu and Boyd, Primer on Monotone Operator Methods, 2016.

Burger, Sawatzky, and Steidl, First Order Algorithms in Variational Image

Processing, 2017.

Bauschke, and Combettes, Convex Analysis and Monotone Operator

Theory in Hilbert Spaces, 2011.
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Fixed-point iterations with contractions

When does the fixed-point iteration

uk+1 = G(uk) (1)

converge?

Banach fixed-point theorem

If the update rule G : Rn → Rn is a contraction, i.e. if there exists a

L < 1 such that

‖G(u)−G(v)‖2 ≤ L‖u− v‖2

holds for all u, v ∈ Rn, then the iteration (1) converges to the unique

fixed-point û of G. More precisely,

‖uk − û‖2 ≤ Lk‖u0 − û‖2.
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Fixed-point iterations with averaged operators

G being a contraction is too restrictive in many cases

G being non-expansive, i.e. Lipschitz continuous with constant

L = 1, is commonly true.

– any rotation G is non-expansive and has a fixed point (0)

– the iteration uk+1 = G(uk) does not converge

Averaged operator

An operator G : Rn → Rn is called averaged if there exists a

non-expansive mapping H : Rn → Rn and a constant α ∈ (0, 1) such

that

G = αI + (1− α)H.
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Criteria for being averaged

Lemma about nonexpansive operators

Convex combinations as well as compositions of nonexpansive operators

are nonexpansive.

Being averaged for smaller α

If a function G : Rn → Rn is averaged with respect to α ∈]0, 1[, then it

is also averaged with respect to any other parameter α̃ ∈]0, α[.

Composition of averaged operators

If G1 : Rn → Rn and G2 : Rn → Rn are averaged, then G2 ◦G1 is also

averaged.

Proofs: Notes
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Criteria for being averaged

Firmly non-expansive

A function G : Rn → Rn is called firmly nonexpansive, if for all

u, v ∈ Rn it holds that

‖G(u)−G(v)‖22 ≤ 〈G(u)−G(v), u− v〉.

Firmly nonexpansive operators are averaged

A function G : Rn → Rn is firmly nonexpansive if and only if G is

averaged with α = 1
2 .

Proof: Notes
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Convergence for averaged operators

Krasnosel’skii-Mann Theorem
If the operator G : Rn → Rn is averaged and has a fixed-point, then the

iteration

uk+1 = G(uk)

converges to a fixed point of G for any starting point u0 ∈ Rn.

Proof: Notes
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Short summary

We have seen:

An operator G is called a contraction if it is Lipschitz continuous

with L < 1.

Contractions have a unique fixed-point and their fixed-point

iteration converges with O(Lk).

An operator R is called a nonexpansive if it is Lipschitz continuous

with L = 1.

An operator G is called a averaged if G = αI + (1− α)R for some

nonexpansive operator R and α ∈ (0, 1).

If an averaged operator has a fixed-point, then the fixed-point

iteration converges. The convergence rate states that∑n
k=1 ‖G(uk)− uk‖2 ≤ C for some constant C.

Firmly nonexpansive operators are the same as averaged operators

with α = 1
2 .

Convergence of Fixed-Point Iterations 20



Relation to gradient descent

We now have two loose ends:

– a conjecture about the convergence of the gradient descent iteration

– theorem that states the convergence of a fixed-point iteration for

averaged operators.

we need to write gradient descent as an averaged operator

Baillon-Haddad theorem
A continuously differentiable convex function E : Rn → R is L-smooth if

and only if 1
L∇E is firmly nonexpansive, i.e.

〈∇E(u)−∇E(v), u− v〉 ≥ 1

L
‖∇E(u)−∇E(v)‖22

for all u, v ∈ Rn.

Proof: See Nesterov, Introductory Lectures on Convex Optimization,

Theorem 2.1.5.
Convergence of Fixed-Point Iterations 21
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Convergence of gradient descent

Gradient descent as an averaged operator

If E : Rn → R has a minimizer, is convex and L-smooth, and τ ∈]0, 2
L [,

then the gradient descent iteration converges to a minimizer.

Sufficient: G(u) = u− τ∇E(u) is averaged.

We know 1
L∇E is averaged with α = 1/2, i.e., 1

L∇E = 1
2 (I + T )

for a non-expansive T .

It hold that

G(u) = u− τL 1

L
∇E(u) =

(
1− Lτ

2

)
I +

Lτ

2
(−T )

If T is non-expansive, (−T ) is non-expansive, too.

⇒ For τ ∈]0, 2
L [, G is averaged.

Back to GD 23



Convergence rate

How fast does gradient descent converge?

Theory of averaged operators shows
∑
k

‖∇E(uk)‖22 is bounded.

Careful analysis shows that for L-smooth functions with τ ∈ (0, 2
L ):

E(uk+1) ≤ E(uk) E(uk)− E(u∗) ∈ O(1/k)

.

It is not possible to get a contraction to speed up convergence because a

contraction would imply the existence of a unique fixed-point.

Reminder
O(g) = {f | ∃C ≥ 0,∃n0 ∈ N0,∀n ≥ n0 : |f(n)| ≤ C|g(n)|}

Back to GD 24



Strongly-convex + L-smooth

Gradient descent as an averaged operator

If E : Rn → R is m-strongly convex and L-smooth, and τ ∈]0, 2
m+L [,

then the gradient descent iteration converges to the unique minimizer u∗

of E with ‖uk − u∗‖ ≤ ck‖u0 − u∗‖.

Proof on the Notes.

Back to GD 25



Strong convexity

Definition: strong convexity

A function E : Rn → R is called strongly convex with constant m or

m-strongly convex if E(u)− m
2 ‖u‖

2
2 is still convex.

Theorem: characterization of m-strongly convex functions 1

For E ∈ C1(Rn) the following are equivalent:

1. E(u)− m
2 ‖u‖

2 is convex

2. E(v) ≥ E(u) + 〈∇E(u), v − u〉+ m
2 ‖v − u‖

2

3. 〈∇E(u)−∇E(v), u− v〉 ≥ m ‖u− v‖2

4. ∇2E(u) � m · I, if E ∈ C2(Rn)

1Ryu, Boyd, A Primer on Monotone Operator Methods, Appendix A
Back to GD 26



Optimal convergence rates

In computer vision, m-strongly convex L-smooth energies are very rare!

Can one do better than the O(1/k) in the L-smooth case?

Famous analysis by Nesterov, (Th 2.1.7 and Th2.1.13) for first order

methods of the form:

uk+1 ∈ u0 + span{∇E(u0), . . . ,∇E(uk)}

If E can be any convex L-smooth function

then no first order method can have a worst-case complexity less

than O(1/k2).

and E is m-strongly convex, then no first order method can have a

worst-case complexity less than O((
√
κ−1√
κ+1

)2k) for κ = L/m.

Back to GD 27



Obtaining optimal convergence rates

Nesterov’s Accelerated Gradient Descent

Pick some starting point v0 = u0, and iterate

1. Compute

uk+1 = vk − 1

L
∇E(vk)

2. Find the next α ∈]0, 1[ by solving

α2
k+1 = (1− αk+1)α

2
k +

m

L
αk+1

3. Compute the extrapolation of uk+1 via

βk =
αk(1− αk)
α2
k + αk+1

vk+1 = uk+1 + βk(u
k+1 − uk)

Back to GD 28



Backtracking line search

Sometimes Lipschitz constant L not known

The convergence analysis shows that one really only needs

E(uk+1) ≤ E(uk)− βk‖∇E(uk)‖2

for some βk ≥ β > 0.

Idea: Pick α ∈ (0, 0.5), β ∈ (0, 1)

Then determine τk each iteration by:

τk ← 1

while E
(
uk − τk∇E(uk)

)
> E(uk)− ατk

∥∥∇E(uk)
∥∥2

τk ← βτk

end

Back to GD 29



Backtracking line search

Line search...

... often leads to improved convergence in practice

... has a (slight) overhead each iteration

... has the same convergence rate as with constant steps

For a backtracking line search scheme for Nesterov’s accelerated gradient

method please see Introductory Lectures on Convex Optimization, page

76, scheme (2.2.6).

Remark: Other strategies for linear search exists, e.g.

τk = argmin
τ
E(uk − τ∇E(uk))

Back to GD 30



Application: TV image denoising

Lets consider the applications of image denoising:

Via energy minimization: Let D1 and D2 be finite difference operators

for the partial derivatives. Determine

û ∈ argmin
u

λ

2
‖u− f‖22︸ ︷︷ ︸

=Hf (u)stay close to input

+
∑
x∈Ω

√
(D1u(x))2 + (D2u(x))2︸ ︷︷ ︸

=TV (u) suppress noise
Back to GD 31



Application: TV image denoising

Problem: The so called total variation regularization

TV (u) =
∑
x∈Ω

√
(D1u(x))2 + (D2u(x))2

is not differentiable!

Idea: Approximate it with a differentiable function

TVε(u) =
∑
x∈Ω

φ
√

(D1u(x))2 + (D2u(x))2 + ε2

Exercises: Our denoising model is L-smooth for

L = λ+
‖D‖S∞

ε

where ‖D‖S∞ is the spectral norm of a matrix. It is defined as the

square root of largest eigenvalue of DTD.

We expect the convergence to be better for large ε, but we expect

TV (u) ≈ TVε(u) only for small ε...
Back to GD 32



Image denoising
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ε = 0.1
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ε = 0.01

→ Motivation for non-smooth optimization!

Back to GD 35



Convergence, τ = 2/(m+ L)
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Convergence, backtracking line search
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Image inpainting

f ∈ RN 1−m ∈ RN u∗ ∈ RN

u∗ ∈ argmin
u

λ

2
‖m · (u− f)‖2 + TVε(u)

Energy is not strongly convex, but L-smooth

Sublinear upper bound on convergence speed

Back to GD 38



Image Inpainting
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50% missing pixels
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50% missing pixels
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70% missing pixels
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70% missing pixels
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90% missing pixels
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90% missing pixels
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Concluding remarks and outlook

GD is still popular to date due to its simplicity and flexibility

Various theoretically optimal extensions (Heavy-ball acceleration,

Nesterov momentum) exist

Envelope approach: many advanced algorithms for non-smooth

optimization are just gradient descent on a particular (albeit

complicated) energy

Endless of variants and modifications of descent methods

conjugate, accelerated, preconditioned, projected, conditional,

mirrored, stochastic, coordinate, continuous, online, variable metric,

subgradient, proximal, ...
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Subgradient descent in one slide

We have seen in the exercises, that even for functions that are not

L-smooth, gradient descent with a small step size reduces the energy up

to some point where it starts oscillating.

Possible convergent variant: Subgradient descent

uk+1 = uk − τkpk, for any pk ∈ ∂E(uk).

If it holds that

E has a minimizer

E is Lipschitz continuous

τk → 0, but
∑n
k=1 τk →∞, e.g. τk = 1/k

then the subgradient descent iteration converges with

E(uk)− E(u∗) ∈ O(1/
√
k)

Back to GD 47



Summary

This lecture is about

u∗ ∈ arg min
u∈Rn

E(u),

for E : Rn → R ∪ {∞} proper, closed, convex.

Gradient descent:

dom E = Rn

For L-smooth E (that has a minimizer)

– energy convergence in O(1/k) for constant step sizes

– energy convergence in O(1/k2) for Nesterov’s method.

For L-smooth m-strongly convex E: energy and iterate convergence

in O(ck)
Line search strategies for unknown Lipschitz constant L.

Back to GD 48
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Gradient projection

Type of problem:

u∗ ∈ argmin
u∈C

E(u), (2)

for an L-smooth E, and a nonempty, closed, convex set C.

Definition
Projection For a (nonempty) closed convex set C ⊂ Rn,

πC(v) = argmin
u∈C

‖u− v‖22

is called the projection of v onto the set C.

Projected GD 50



Projections

Theorem
Existence and Uniqueness of the Projection For any (nonempty) closed

convex set C ⊂ Rn and any v the projection πC(v) exists and is single

valued.

Proof: Notes.

Abuse of notation: Although πC(v) is, by definition, a set, we usually

identify πC(v) with the single element in the set.
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Example projections

What is the projection of v ∈ Rn onto

C = {u ∈ Rn | ‖u‖2 ≤ 1}?

C = {u ∈ Rn | ‖u‖∞ := maxi |ui| ≤ 1}?

C = {u ∈ Rn | ui ∈ [a, b]}?

C = {u ∈ Rn | ui ≥ a}?

C = {u ∈ Rn | ‖u‖1 =
∑
i |ui|}?
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Intuition on gradient projection

Let E be L-smooth convex function and C a nonempty, closed, convex

set. Consider a problem

u∗ ∈ argmin
u∈C

E(u), (3)

We know that, without the constraint u ∈ C, gradient descent works and

looks like:

uk+1 = uk − τk∇E(uk)

The problem with GD is that the update might violate uk+1 ∈ C

Gradient projection solves this by projecting every iteration back to

the feasible set

uk+1 = πC(u
k − τk∇E(uk))

Projected GD 53



Intuition on gradient projection

Toy problem min|ui|≤1 ‖u− f‖22
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Gradient Projection Algorithm

Definition
Gradient Projection Algorithm Let C ⊂ Rn be a nonempty closed convex

set and let E : Rn → R ∈ C1(Rn). Then, for u0 ∈ C

uk+1 = πC(u
k − τ∇E(uk))

is called the gradient projection algorithm.

Before we spend time implementing it, we need to know when, how, and

why it works, i.e., for which E and τ the fixed-point iteration

G(u) = πC(u− τ∇E(u))

converges

Projected GD 55



Projected GD as a fixed-point iteration

Strategy: show that the fixed point iteration

G(u) = πC(u− τ∇E(u))

converges because G is an averaged operator

From the analysis of gradient descent, we know:

1. for τ ∈ (0, 2
L ) the operator G1(u) = u− τ∇E(u) is averaged

2. the composition of averaged operators is averaged

If we can show that πC is averaged, we are done

Projected GD 56



Properties of the projection

Theorem
Firm Nonexpansiveness The projection πC onto a nonempty closed

convex set C ⊂ Rn is firmly nonexpansive, i.e. it meets

〈u− v, πC(u)− πC(v)〉 ≥ ‖πC(u)− πC(v)‖2 ∀u, v ∈ Rn.

Remember that a firmly non-expansive operator is averaged with α = 1
2

Corollary

For an L-smooth energy E that has a minimizer and a choice τ ∈]0, 2
L [

the gradient projection converges with rate rate is O(1/k)

O(1/k) is suboptimal, a generalized version with O(1/k2) comes later
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Convergence of the projected gradient descent

Recall: The composition of a non-expansive operator with a contraction

is a contraction

This means that our gradient descent result carries over:

Theorem
For E being L-smooth and m-strongly convex and τ ∈ (0, 2

L ) the

gradient projection algorithm converges to the (unique) global minimizer

u∗ with E(uk)− E(u∗) ∈ O(ck) with c < 1
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Example Application: Solving a SUDOKU

Find the missing numbers such that each block, each row, and each

column contains each number 1– 4 only once

2 3

1 3

3 2

2 4

We can do this with convex optimization?

Idea: Identify the number i with

ei = (0, · · · , 0, 1︸︷︷︸
ith position

, 0, · · · , 0)T .
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Example Application: Solving a SUDOKU

For the 4× 4 case, look for a matrix u ∈ {1, 2, 3, 4}4×4 such that

ui,j = fi,j for the entries fi,j that are given

Reformulation: find u ∈ {0, 1}4×4×4, where ui,j,k = 1 means ui,j = k,

subject to the constraints

Rule Implication

One number for each blank spot
∑
k ui,j,k = 1 ∀i, j

Respect given entries ui,j,k = 1 if fi,j = k

Numbers occur in a row once
∑
j ui,j,k = 1 ∀i, k

Numbers occur in a column once
∑
i ui,j,k = 1 ∀j, k

Numbers occur in a block once
∑

(i,j)∈Bl
ui,j,k = 1 ∀Bl, k
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Example Application: Solving a SUDOKU

All constraints are linear, i.e. can be expressed as A~u = ~1.

Find u with ui,j,k ∈ {0, 1} is a nonconvex constraint, so we relax it.

Convex relaxation: use the smallest convex set that contains the

nonconvex one, ui,j,k ∈ [0, 1]. Solve the convex problem and if the result

meets ui,j,k ∈ {0, 1}, it also solves the nonconvex problem
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Example Application: Solving a SUDOKU

Nice thing for SUDOKU: There exists a solution to A~u = ~1

This means we may solve

û ∈ argmin
ui,j,k∈[0,1]

‖A~u− ~1‖22

Hope that ûi,j,k ∈ {0, 1}, in which case we solved the SUDOKU

Remarks:

Exact recovery guarantees (when is ûi,j,k ∈ {0, 1}) are an active

field of research.

Similar constructions can be done for many computer vision and

machine learning problems (labeling problems, segmentation, graph

cuts, or functional lifting)
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Example application: Unmixing and sparse recovery

Hyperspectral imagery

z-direction: reflected energy depending on the wavelength of the

incoming light. It is material specific.
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Example application: Unmixing and sparse recovery

Measured signals f

Find decomposition f = Au+ n

Dictionary of materials A, mixing coefficients u (sparse) and noise n
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Example application: Unmixing and sparse recovery

Sparse recovery: Minimize a data fidelity term Hf (v) which is L-smooth,

such that v can be represented in a dictionary A, i.e. v = Au, and the

representing coefficients u are sparse.

Energy minimization approach:

min
u
Hf (Au) + α‖u‖1.

To apply gradient descent or projection algorithms, we need to

reformulate the problem

min
u
Hf (A(u1 − u2)) + α〈u1,1〉+ α〈u2,1〉, u1 ≥ 0, u2 ≥ 0
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Example application: Unmixing and sparse recovery

The reformulation

min
u
Hf (Au) + α‖u‖1,

min
u1,u2

Hf (A(u1 − u2)) + α〈u1,1〉+ α〈u2,1〉, u1 ≥ 0, u2 ≥ 0

is unsatisfying because it doubles the size of the unknowns. Another way?
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From Proj to Prox

Remember the proof of

Theorem
Firm Nonexpansiveness The projection πC onto a nonempty closed

convex set C ⊂ Rn is firmly nonexpansive.

Let pu ∈ ∂δC(πC(u)), pv ∈ ∂δC(πC(v)) be subgradients

〈u− v, πC(u)− πC(v)〉 = 〈πC(u)− πC(v) + pu − pv, πC(u)− πC(v)〉

= ‖πC(u)− πC(v)‖2 + 〈pu − pv, πC(u)− πC(v)〉

≥ ‖πC(u)− πC(v)‖2

We did not use that pu and pv were subgradients of an indicator function.

The proof still works after replacing δC with an arbitrary convex function.
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Proximal Operator

Definition
Given a closed, proper, convex function E : Rn → R∪ {∞}, the mapping

proxE : Rn → Rn defined as

proxE(v) := argmin
u∈Rn

E(u) +
1

2
‖u− v‖2

is called the proximal operator or proximal mapping of E.

Existence: E(u)+ 1
2 ‖u− v‖

2 is closed, it has bounded sublevel sets

Uniqueness: E(u) + (1/2) ‖u− v‖2 is strongly convex

Generalization of the projection: Choose E = δC .
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Proximal Operator

Theorem
The proximal operator proxE for a closed, proper, convex function E is

firmly nonexpansive.

Course notes.

Consider minimizing an energy

E(u) = F (u) +G(u),

for proper, closed, convex E1 and E2 such that

F : Rn → R is L-smooth.

G : Rn → R ∪ {∞} has an easy-to-evaluate proximal operator

Intuition: we can generalize projected gradient by taking gradient descent

steps on F and proximal steps on G
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Proximal gradient algorithm

Definition
For a closed, proper, convex function G : Rn → R ∪ {∞} and a function

F ∈ C1(Rn), given an initial point u0 ∈ Rn and a step size τ , the

algorithm

uk+1 = proxτG
(
uk − τ∇F (uk)

)
, k = 0, 1, 2, . . . ,

is called the proximal gradient method.

Often referred to as forward-backward splitting or ISTA

For constant G, it reduces to gradient descent

For constant F , it is called proximal point algorithm

For G = δC , it reduces to projected gradient descent

Easy convergence analysis as fixed-point iteration of averaged operator
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Convergence analysis

Theorem
If F is L-smooth and τ ∈ (0, 2

L ), the proximal gradient method

converges.

We have seen: prox-operator is firmly nonexpansive (averaged α = 1
2 )

Theorem
If the proper, closed function G is m-strongly convex, then

proxτG : Rn → Rn is a contraction.

Corollary

If F is L-smooth, τ ∈ (0, 2
L ), and either G or F is strongly convex, then

the proximal gradient method converges linearly, i.e.,

‖uk − u∗‖22 ∈ O(ck) for some c < 1.
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Sanity check and Examples

Sanity check: the algorithm converges to what? minimizer of E = G+ F

Examples of functions whose prox has a closed form:

Quadratic functions

f(x) =
1

2
‖Au− b‖2, proxτf (v) = (I + τATA)−1(v − τb)

Euclidean norm

f(x) = ‖x‖ , proxτf (v) =

(1− τ/ ‖v‖)v if ‖v‖ ≥ τ

0 otherwise.

`1-norm (cf. exercise sheet 3), “soft thresholding”

f(x) = ‖x‖1 ,
(
proxτf (v)

)
i
=


vi + τ if vi < −τ

0 if |vi| ≤ τ

vi − τ if vi > τ.
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Application sparse recovery

We can now solve

min
u
‖Au− f‖22 + α‖u‖1

without smoothing and without the introduction of additional variables
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Convergence Rates and Extensions

Similar to gradient descent the proximal gradient method on

E = F +G

for L-smooth F , E having a minimizer, and choosing the step size τ to

be constant converges with E(uk)− E(u∗) ∈ O(1/k).
Similar to gradient descent

accelerated to E(uk)− E(u∗) ∈ O(1/k2) with Nesterov’s scheme

line search: if we cannot find the Lipschitz constant for acceleration

For gradient projection, the analysis is in Introductory lectures on convex

optimization by Nesterov. For proximal gradient, in A Fast Iterative

Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Beck,

Teboulle, 2009.
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Accelerated proximal gradient

Pick some starting point v0 = u0, set t0 = 1, and iterate

1. Compute

uk+1 = prox 1
LG

(
vk − 1

L
∇F (vk)

)
2. Determine

tk+1 =
1 +

√
1 + 4t2k
2

,

3. Compute the extrapolation of uk+1 via

vk+1 = uk+1 +
tk − 1

tk+1
(uk+1 − uk)

See Chambolle, Dossal, On the Convergence of the Iterates of the ”Fast Iterative

Shrinkage/Thresholding Algorithm”, 2015, for more general algorithms.
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Accelerated gradient projection with line search

Let Qτ (u, v) = F (v) + 〈u− v,∇F (v)〉+ 1
2τ ‖u− v‖

2 +G(u) Pick

v0 = u0, β < 1, τ0 > 0 , set t0 = 1 and iterate

1. Find a suitable step size τk ≤ τk−1 via

τk = τk−1, uk+1 = proxτkG
(
vk − τk∇F (vk)

)
while E(uk+1) > Qτ (u

k+1, vk)

τk ← βτk, uk+1 ← proxτkG
(
vk − τk∇F (vk)

)
end

2. Determine

tk+1 =
1 +

√
1 + 4t2k
2

,

3. Compute the extrapolation of uk+1 via

vk+1 = uk+1 +
tk − 1

tk+1
(uk+1 − uk)
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What we can and cannot do yet

As we have seen

min
u

1

2
‖Au− f‖2 + α‖u‖1

does not pose a problem anymore.

But what about our TV-denoising model:

min
u

1

2
‖u− f‖2 + α‖Du‖1?

The problem itself is a proximal operator but not easy-to-evaluate. We

will see how to solve it next week.
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