
Gradient Methods

V. Estellers

WS 2017



Gradient Methods

(uk, E(uk))

(uk+1, E(uk+1))

(uk+2, E(uk+2))

(u∗, E(u∗)). . .

∇E(u∗) = 0

2



Outline

Gradient Descent

Convergence of Fixed-Point Iterations

Contractions

Averaged operators

Back to GD

L-smooth functions

Convergence rates

Gradient Descent 3



Gradient Descent

Consider the unconstrained and smooth optimization problem

u∗ ∈ arg min
u∈Rn

E(u),

for E : Rn → R ∪ {∞} proper, closed, and convex

Gradient descent is an optimization technique for the “simple” case

– dom E = Rn

– E ∈ C1(Rn)
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Descent methods

Suppose we are at a point uk ∈ Rn where ∇E(uk) 6= 0

Consider the ray u(τ) = uk + τd for some direction d ∈ Rn

E(u(τ)) = E(uk + τd) = E(uk) + τ〈∇E(uk), d〉+ o(τ)

– τ〈∇E(uk), d〉 dominates o(τ) for sufficiently small τ

– If 〈∇E(uk), d〉 < 0, d is a descent direction as, for suff. small τ ,

E(u(τ)) < E(u)
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Descent methods
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Descent methods

The negative gradient is the steepest descent direction

argmin
‖d‖=1

{
〈d,∇E(uk)〉

}
= − ∇E(uk)

‖∇E(uk)‖

The gradient is orthogonal to the iso-contours γ : I → Rn

∇E(γ(t)) ⊥ γ̇(t), t ∈ I

Common choices of descent directions

– Scaled gradient: dk = −Dk∇E(uk), Dk � 0

– Newton: Dk = [∇2E(uk)]−1

– Quasi-Newton: Dk ≈ [∇2E(uk)]−1

– Steepest descent: Dk = I
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Gradient descent

Definition
Given a function E ∈ C1(Rn), an initial point u0 ∈ Rn and a sequence

(τk) ⊂ R of step sizes, the iteration

uk+1 = uk − τk∇E(uk), k = 0, 1, 2, . . . ,

is called gradient descent.

Philosophy:

Generate a decreasing sequence {E(uk)}∞k=0

Each iteration is cheap, easy to code

Choosing τk to guarantee convergence is not trivial
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Constant step size

Consider a constant step size τk = τ

Will gradient descent work for any convex function?
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For any constant time step τ > 0, the starting point u0 =
(
τ
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)2
results in a gradient descent sequence u0,−u0, u0, . . .
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Intuition and requirements for constant step-size

Intuitively, an ”infinitely quickly changing gradient” leads to ”infinitely

quickly changing” gradient descent updates

uk+1 = uk − τk∇E(uk), k = 0, 1, 2, . . . ,

Need a stronger version of differentiability to prevent inf. quick changes

Definition: L-smooth function
If E : Rn → R is continuously differentiable and its first derivative is

Liptschitz continuous, i.e. there exists an L ≥ 0 such that

‖∇E(u)−∇E(v)‖ ≤ L ‖u− v‖ ,∀u, v ∈ Rn,

then E is called L-smooth
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Lipschitz continuity

Reminder
f : Rn → Rm is called Lipschitz continuous if for some L ≥ 0

‖f(x)− f(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Rn.

If the function is differentiable, we can characterize Lipschitz continuous

functions by the size of its gradient.

Theorem: Lipschitz continuity for differentiable functions

A differentiable function E : Rn → Rm is Lipschitz with parameter L if

and only if ‖∇E(x)‖S∞ ≤ L for all x ∈ Rn.
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Convergence Analysis

Conjecture

For any L-smooth proper convex function E (with a minimizer) there

exists a step size τ such that the gradient descent algorithm converges

To prove this conjecture, we will use a general fixed-point Iteration for

algorithms of the form

uk+1 = G(uk)

Example:

G(u) = u− τ∇E(u).

If the iteration converges to û and ∇E is continuous, then ∇E(û) = 0.
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Convergence of
Fixed-Point Iterations

References:

Ryu and Boyd, Primer on Monotone Operator Methods, 2016.

Burger, Sawatzky, and Steidl, First Order Algorithms in Variational Image

Processing, 2017.

Bauschke, and Combettes, Convex Analysis and Monotone Operator

Theory in Hilbert Spaces, 2011.
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Fixed-point iterations with contractions

When does the fixed-point iteration

uk+1 = G(uk) (1)

converge?

Banach fixed-point theorem

If the update rule G : Rn → Rn is a contraction, i.e. if there exists a

L < 1 such that

‖G(u)−G(v)‖2 ≤ L‖u− v‖2

holds for all u, v ∈ Rn, then the iteration (1) converges to the unique

fixed-point û of G. More precisely,

‖uk − û‖2 ≤ Lk‖u0 − û‖2.
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Fixed-point iterations with averaged operators

G being a contraction is too restrictive in many cases

G being non-expansive, i.e. Lipschitz continuous with constant

L = 1, is commonly true.

– any rotation G is non-expansive and has a fixed point (0)

– the iteration uk+1 = G(uk) does not converge

Averaged operator

An operator G : Rn → Rn is called averaged if there exists a

non-expansive mapping H : Rn → Rn and a constant α ∈ (0, 1) such

that

G = αI + (1− α)H.
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Criteria for being averaged

Lemma about nonexpansive operators

Convex combinations as well as compositions of nonexpansive operators

are nonexpansive.

Being averaged for smaller α

If a function G : Rn → Rn is averaged with respect to α ∈]0, 1[, then it

is also averaged with respect to any other parameter α̃ ∈]0, α[.

Composition of averaged operators

If G1 : Rn → Rn and G2 : Rn → Rn are averaged, then G2 ◦G1 is also

averaged.

Proofs: Notes
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Criteria for being averaged

Firmly non-expansive

A function G : Rn → Rn is called firmly nonexpansive, if for all

u, v ∈ Rn it holds that

‖G(u)−G(v)‖22 ≤ 〈G(u)−G(v), u− v〉.

Firmly nonexpansive operators are averaged

A function G : Rn → Rn is firmly nonexpansive if and only if G is

averaged with α = 1
2 .

Proof: Notes
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Convergence for averaged operators

Krasnosel’skii-Mann Theorem
If the operator G : Rn → Rn is averaged and has a fixed-point, then the

iteration

uk+1 = G(uk)

converges to a fixed point of G for any starting point u0 ∈ Rn.

Proof: Notes
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Short summary

We have seen:

An operator G is called a contraction if it is Lipschitz continuous

with L < 1.

Contractions have a unique fixed-point and their fixed-point

iteration converges with O(Lk).

An operator R is called a nonexpansive if it is Lipschitz continuous

with L = 1.

An operator G is called a averaged if G = αI + (1− α)R for some

nonexpansive operator R and α ∈ (0, 1).

If an averaged operator has a fixed-point, then the fixed-point

iteration converges. The convergence rate states that∑n
k=1 ‖G(uk)− uk‖2 ≤ C for some constant C.

Firmly nonexpansive operators are the same as averaged operators

with α = 1
2 .
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Relation to gradient descent

We now have two loose ends:

– a conjecture about the convergence of the gradient descent iteration

– theorem that states the convergence of a fixed-point iteration for

averaged operators.

we need to write gradient descent as an averaged operator

Baillon-Haddad theorem
A continuously differentiable convex function E : Rn → R is L-smooth if

and only if 1
L∇E is firmly nonexpansive, i.e.

〈∇E(u)−∇E(v), u− v〉 ≥ 1

L
‖∇E(u)−∇E(v)‖22

for all u, v ∈ Rn.

Proof: See Nesterov, Introductory Lectures on Convex Optimization,

Theorem 2.1.5.
Convergence of Fixed-Point Iterations 21
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Convergence of gradient descent

Gradient descent as an averaged operator

If E : Rn → R has a minimizer, is convex and L-smooth, and τ ∈]0, 2
L [,

then the gradient descent iteration converges to a minimizer.

Sufficient: G(u) = u− τ∇E(u) is averaged.

We know 1
L∇E is averaged with α = 1/2, i.e., 1

L∇E = 1
2 (I + T )

for a non-expansive T .

It hold that

G(u) = u− τL 1

L
∇E(u) =

(
1− Lτ

2

)
I +

Lτ

2
(−T )

If T is non-expansive, (−T ) is non-expansive, too.

⇒ For τ ∈]0, 2
L [, G is averaged.
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Convergence rate

How fast does gradient descent converge?

Theory of averaged operators shows
∑
k

‖∇E(uk)‖22 is bounded.

Careful analysis shows that for L-smooth functions with τ ∈ (0, 2
L ):

E(uk+1) ≤ E(uk) E(uk)− E(u∗) ∈ O(1/k)

.

It is not possible to get a contraction to speed up convergence because a

contraction would imply the existence of a unique fixed-point.

Reminder
O(g) = {f | ∃C ≥ 0,∃n0 ∈ N0,∀n ≥ n0 : |f(n)| ≤ C|g(n)|}
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Strongly-convex + L-smooth

Gradient descent as an averaged operator

If E : Rn → R is m-strongly convex and L-smooth, and τ ∈]0, 2
m+L [,

then the gradient descent iteration converges to the unique minimizer u∗

of E with ‖uk − u∗‖ ≤ ck‖u0 − u∗‖.

Proof on the Notes.

Back to GD 25



Strong convexity

Definition: strong convexity

A function E : Rn → R is called strongly convex with constant m or

m-strongly convex if E(u)− m
2 ‖u‖

2
2 is still convex.

Theorem: characterization of m-strongly convex functions 1

For E ∈ C1(Rn) the following are equivalent:

1. E(u)− m
2 ‖u‖

2 is convex

2. E(v) ≥ E(u) + 〈∇E(u), v − u〉+ m
2 ‖v − u‖

2

3. 〈∇E(u)−∇E(v), u− v〉 ≥ m ‖u− v‖2

4. ∇2E(u) � m · I, if E ∈ C2(Rn)

1Ryu, Boyd, A Primer on Monotone Operator Methods, Appendix A
Back to GD 26



Optimal convergence rates

In computer vision, m-strongly convex L-smooth energies are very rare!

Can one do better than the O(1/k) in the L-smooth case?

Famous analysis by Nesterov, (Th 2.1.7 and Th2.1.13) for first order

methods of the form:

uk+1 ∈ u0 + span{∇E(u0), . . . ,∇E(uk)}

If E can be any convex L-smooth function

then no first order method can have a worst-case complexity less

than O(1/k2).

and E is m-strongly convex, then no first order method can have a

worst-case complexity less than O((
√
κ−1√
κ+1

)2k) for κ = L/m.
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Obtaining optimal convergence rates

Nesterov’s Accelerated Gradient Descent

Pick some starting point v0 = u0, and iterate

1. Compute

uk+1 = vk − 1

L
∇E(vk)

2. Find the next α ∈]0, 1[ by solving

α2
k+1 = (1− αk+1)α

2
k +

m

L
αk+1

3. Compute the extrapolation of uk+1 via

βk =
αk(1− αk)
α2
k + αk+1

vk+1 = uk+1 + βk(u
k+1 − uk)
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Backtracking line search

Sometimes Lipschitz constant L not known

The convergence analysis shows that one really only needs

E(uk+1) ≤ E(uk)− βk‖∇E(uk)‖2

for some βk ≥ β > 0.

Idea: Pick α ∈ (0, 0.5), β ∈ (0, 1)

Then determine τk each iteration by:

τk ← 1

while E
(
uk − τk∇E(uk)

)
> E(uk)− ατk

∥∥∇E(uk)
∥∥2

τk ← βτk

end
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Backtracking line search

Line search...

... often leads to improved convergence in practice

... has a (slight) overhead each iteration

... has the same convergence rate as with constant steps

For a backtracking line search scheme for Nesterov’s accelerated gradient

method please see Introductory Lectures on Convex Optimization, page

76, scheme (2.2.6).

Remark: Other strategies for linear search exists, e.g.

τk = argmin
τ
E(uk − τ∇E(uk))
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Application: TV image denoising

Lets consider the applications of image denoising:

Via energy minimization: Let D1 and D2 be finite difference operators

for the partial derivatives. Determine

û ∈ argmin
u

λ

2
‖u− f‖22︸ ︷︷ ︸

=Hf (u)stay close to input

+
∑
x∈Ω

√
(D1u(x))2 + (D2u(x))2︸ ︷︷ ︸

=TV (u) suppress noise
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û ∈ argmin
u

λ

2
‖u− f‖22︸ ︷︷ ︸

=Hf (u)stay close to input

+
∑
x∈Ω

√
(D1u(x))2 + (D2u(x))2︸ ︷︷ ︸

=TV (u) suppress noise

Back to GD 31



Application: TV image denoising

Problem: The so called total variation regularization

TV (u) =
∑
x∈Ω

√
(D1u(x))2 + (D2u(x))2

is not differentiable!

Idea: Approximate it with a differentiable function

TVε(u) =
∑
x∈Ω

φ
√

(D1u(x))2 + (D2u(x))2 + ε2

Exercises: Our denoising model is L-smooth for

L = λ+
‖D‖S∞

ε

We expect the convergence to be better for large ε, but we expect

TV (u) ≈ TVε(u) only for small ε...

Back to GD 32
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Image denoising
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ε = 0.1
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ε = 0.01

→ Motivation for non-smooth optimization!
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Convergence, τ = 2/(m+ L)
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Convergence, backtracking line search
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Image inpainting

f ∈ RN 1−m ∈ RN u∗ ∈ RN

u∗ ∈ argmin
u

λ

2
‖m · (u− f)‖2 + TVε(u)

Energy is not strongly convex, but L-smooth

Sublinear upper bound on convergence speed
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Image Inpainting
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50% missing pixels
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50% missing pixels
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70% missing pixels
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70% missing pixels
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90% missing pixels
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90% missing pixels

Back to GD 45



Concluding remarks and outlook

GD is still popular to date due to its simplicity and flexibility

Various theoretically optimal extensions (Heavy-ball acceleration,

Nesterov momentum) exist

Envelope approach: many advanced algorithms for non-smooth

optimization are just gradient descent on a particular (albeit

complicated) energy

Endless of variants and modifications of descent methods

conjugate, accelerated, preconditioned, projected, conditional,

mirrored, stochastic, coordinate, continuous, online, variable metric,

subgradient, proximal, ...

Back to GD 46



Subgradient descent in one slide

We have seen in the exercises, that even for functions that are not

L-smooth, gradient descent with a small step size reduces the energy up

to some point where it starts oscillating.

Possible convergent variant: Subgradient descent

uk+1 = uk − τkpk, for any pk ∈ ∂E(uk).

If it holds that

E has a minimizer

E is Lipschitz continuous

τk → 0, but
∑n
k=1 τk →∞, e.g. τk = 1/k

then the subgradient descent iteration converges with

E(uk)− E(u∗) ∈ O(1/
√
k)

Back to GD 47



Summary

This lecture is about

u∗ ∈ arg min
u∈Rn

E(u),

for E : Rn → R ∪ {∞} proper, closed, convex.

Gradient descent:

dom E = Rn

For L-smooth E (that has a minimizer)

– energy convergence in O(1/k) for constant step sizes

– energy convergence in O(1/k2) for Nesterov’s method.

For L-smooth m-strongly convex E: energy and iterate convergence

in O(ck)

Line search strategies for unknown Lipschitz constant L.
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