Duality

V. Estellers

WS 2017

Summary: descent methods

For energies of the form

$$
u^{*} \in \arg \min _{u \in \mathbb{R}^{n}} F(u)+G(u)
$$

for proper, closed, convex $F: \mathbb{R}^{n} \rightarrow \mathbb{R}, G: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$, with F additionally being L-smooth, we discussed

Gradient descent: $G \equiv 0$
Gradient projection: $G=\delta_{C}$
Proximal gradient: G simple (easy to compute prox)

Convergence rates

Energy convergence in $\mathcal{O}(1 / k)$ for " plain" method
Energy convergence in $\mathcal{O}\left(1 / k^{2}\right)$ for Nesterov's method Strongly convex energies, convergence $\mathcal{O}\left(c^{k}\right)$ for energy/iterates.

Limitations of Direct Gradient Projection

Given $D: \mathbb{R}^{n \times m \times c} \rightarrow \mathbb{R}^{n m \times 2 c}$ the finite difference operator, consider the total variation denoising problem

$$
u^{*} \in \underset{u}{\operatorname{argmin}} \frac{1}{2}\|u-f\|_{2}^{2}+\alpha\|D u\|_{2,1},
$$

Is subgradient descent the best we can do despite strong convexity?

Let's try to remove D from the $\|\cdot\|_{2,1}$ by re-formulating the energy:

$$
\|g\|=\max _{|q| \leq 1}\langle q, g\rangle
$$

Alternative Formulation

The previous simple observation tells us that

$$
\begin{aligned}
& \|g\|_{2,1}=\sum_{i}\left\|g_{i}\right\|=\sum_{i} \max _{\left|q_{i}\right| \leq 1}\left\langle q_{i}, g_{i}\right\rangle=\max _{\left|q_{i}\right| \leq 1} \sum_{i}\left\langle q_{i}, g_{i}\right\rangle=\max _{\left\|q_{i}\right\| \leq 1}\langle g, q\rangle \\
& \|g\|_{2,1}=\max _{\|q\|_{2, \infty} \leq 1}\langle g, q\rangle
\end{aligned}
$$

We may write

$$
\begin{aligned}
\min _{u} \frac{1}{2}\|u-f\|_{2}^{2}+\alpha\|D u\|_{2,1} & =\min _{u} \frac{1}{2}\|u-f\|_{2}^{2}+\alpha \max _{\|q\|_{2, \infty} \leq 1}\langle D u, q\rangle \\
& =\min _{u} \max _{\|q\|_{2, \infty} \leq 1} \frac{1}{2}\|u-f\|_{2}^{2}+\alpha\langle D u, q\rangle
\end{aligned}
$$

Can we switch min and max?

Alternative Formulation of TV Minimization

Theorem (Rockafellar, Convex Analysis, 37.3.2 ${ }^{1}$)

Let C and D be non-empty closed convex sets in \mathbb{R}^{n} and \mathbb{R}^{m}, respectively, and let S be a continuous finite concave-convex function on $C \times D$. If either C or D is bounded, one has

$$
\inf _{v \in D} \sup _{q \in C} S(v, q)=\sup _{q \in C} \inf _{v \in D} S(v, q)
$$

We can therefore compute

$$
\begin{aligned}
\min _{u} \frac{1}{2}\|u-f\|_{2}^{2}+\alpha\|D u\|_{1} & =\min _{u} \max _{\|q\|_{2, \infty} \leq 1} \frac{1}{2}\|u-f\|_{2}^{2}+\alpha\langle D u, q\rangle \\
& =\max _{\|q\|_{2, \infty} \leq 1} \min _{u} \frac{1}{2}\|u-f\|_{2}^{2}+\alpha\langle D u, q\rangle
\end{aligned}
$$

[^0]
Alternative Formulation of TV Minimization

Now the inner minimization problem obtains its optimum at

$$
\begin{aligned}
0 & =u-f+\alpha D^{*} q, \\
\Rightarrow u & =f-\alpha D^{*} q .
\end{aligned}
$$

The remaining problem in q becomes

$$
\begin{aligned}
& \max _{\|q\|_{2, \infty} \leq 1} \frac{1}{2}\left\|f-\alpha D^{*} q-f\right\|_{2}^{2}+\alpha\left\langle D\left(f-\alpha D^{*} q\right), q\right\rangle \\
& =\max _{\|q\|_{2, \infty} \leq 1} \frac{1}{2}\left\|\alpha D^{*} q\right\|_{2}^{2}+\alpha\langle D f, q\rangle-\left\|\alpha D^{*} q\right\|_{2}^{2} \\
& =\max _{\|q\|_{2, \infty} \leq 1}-\frac{1}{2}\left\|\alpha D^{*} q\right\|_{2}^{2}+\alpha\langle D f, q\rangle
\end{aligned}
$$

Alternative Formulation of TV Minimization

Since we prefer minimizations over maximizations, we write

$$
\begin{aligned}
& \hat{q}=\underset{\|q\|_{2, \infty} \leq 1}{\operatorname{argmax}}-\frac{1}{2}\left\|\alpha D^{*} q-f\right\|_{2}^{2} \\
& \hat{q}=\underset{\|q\|_{2, \infty} \leq 1}{\operatorname{argmin}} \frac{1}{2}\left\|D^{*} q-\frac{f}{\alpha}\right\|_{2}^{2} \\
& \hat{q}=\underset{q \in C}{\operatorname{argmin}} \frac{1}{2}\left\|D^{*} q-\frac{f}{\alpha}\right\|_{2}^{2} \text { where } C=\left\{q \in \mathbb{R}^{n m \times 2 c} \mid\|q\|_{2, \infty} \leq 1\right\}
\end{aligned}
$$

Minimization of a convex, proper, closed, L-smooth function over a convex set C. We can solve it with gradient projection: .

$$
q^{k+1}=\pi_{C}\left(q^{k}-\tau D\left(D^{*} q^{k}-\frac{f}{\alpha}\right)\right)
$$

Can we Generalize this Reformulation? Conjugation

The key idea of our reformulation is

$$
\|g\|=\max _{|q| \leq 1}\langle q, g\rangle
$$

Definition

We define the convex conjugate of the function $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ to be

$$
E^{*}(p)=\sup _{u \in \mathbb{R}^{n}}(\langle u, p\rangle-E(u)) .
$$

Lemma

Convexity of the Convex Conjugate The convex conjugate

$$
E^{*}(p)=\sup _{u \in \mathbb{R}^{n}}(\langle u, p\rangle-E(u)) .
$$

of any proper function $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex. If E is closed, E^{*}
Disalidso closed.

Convex Conjugate Rules

Scalar multiplication :

$$
E(u)=\alpha \tilde{E}(u) \Rightarrow E^{*}(p)=\alpha \tilde{E}^{*}(p / \alpha)
$$

Separable sum:

$$
E\left(u_{1}, u_{2}\right)=E_{1}\left(u_{1}\right)+E_{2}\left(u_{2}\right) \Rightarrow E^{*}\left(p_{1}, p_{2}\right)=E_{1}^{*}\left(p_{1}\right)+E_{2}^{*}\left(p_{2}\right)
$$

Sum rule for E_{1}, E_{2} closed, convex, proper:

$$
E(u)=E_{1}(u)+E_{2}(u) \Rightarrow E^{*}(p)=\inf _{p=p_{1}+p_{2}} E_{1}^{*}\left(p_{1}\right)+E_{2}^{*}\left(p_{2}\right) .
$$

Translation:

$$
E(u)=\tilde{E}(u-b) \Rightarrow E^{*}(p)=\tilde{E}^{*}(p)+\langle p, b\rangle
$$

Additional affine functions:

$$
E(u)=\tilde{E}(u)+\langle b, u\rangle+a \Rightarrow E^{*}(p)=\tilde{E}^{*}(p-b)-a
$$

Examples of Convex Conjugates

Do you see a pattern?

$$
\begin{aligned}
& E(u)=\frac{1}{2} u^{2} \text { leads to } E^{*}(p)=\frac{1}{2} p^{2} \\
& E(u)=\|u\|_{2} \text { leads to } E^{*}(p)=\left\{\begin{array}{cc}
0 & \text { if }\|p\|_{2} \leq 1, \\
\infty & \text { else. }
\end{array}\right. \\
& E(u)=\|u\|_{1} \text { leads to } E^{*}(p)=\left\{\begin{array}{cc}
0 & \text { if }\|p\|_{\infty} \leq 1, \\
\infty & \text { else. }
\end{array}\right. \\
& E(u)=\|u\|_{\infty} \text { leads to } E^{*}(p)=\left\{\begin{array}{cc}
0 & \text { if }\|p\|_{1} \leq 1, \\
\infty & \text { else. }
\end{array}\right. \\
& E(u)=\left\{\begin{array}{cc}
0 & \text { if }\|u\|_{2} \leq 1, \\
\infty & \text { else. leads to } E^{*}(p)=\|p\|_{2} .
\end{array}\right. \\
& E(u)=\left\{\begin{array}{cc}
0 & \text { if }\|u\|_{\infty} \leq 1, \\
\infty & \text { else. leads to } E^{*}(p)=\|p\|_{1} .
\end{array}\right. \\
& E(u)=\left\{\begin{array}{cc}
0 & \text { if }\|u\|_{1} \leq 1, \\
\infty & \text { else. leads to } E^{*}(p)=\|p\|_{\infty} .
\end{array}\right.
\end{aligned}
$$

Fenchel-Young Inequality

Theorem (Fenchel-Young Inequality)
Let E be proper, convex and closed, $u \in \operatorname{dom}(E) \subset \mathbb{R}^{n}$, and $p \in \mathbb{R}^{n}$, then $E(u)+E^{*}(p) \geq\langle u, p\rangle$. Equality holds if and only if $p \in \partial E(u)$.

Theorem (Biconjugate)
Let $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ be proper, convex and closed, then $E^{* *}=E$.

For TV minimization we replaced $\|D u\|_{2,1}$ by

$$
\left(\|\cdot\|_{2,1}\right)^{* *}(D u)=\sup _{p}\langle p, D u\rangle-\delta_{\|\cdot\|_{2, \infty} \leq 1}(p) .
$$

Convex conjugation

Theorem
Let E be proper, convex and closed, then the following two conditions are equivalent:

$$
\begin{aligned}
& p \in \partial E(u) \\
& u \in \partial E^{*}(p)
\end{aligned}
$$

Fenchel duality

Theorem (Fenchel's Duality)
Let $H: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ and $R: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{\infty\}$ be proper, closed, convex functions and let there exist a $u \in \operatorname{ri}(\operatorname{dom}(H))$ such that $K u \in \operatorname{ri}(\operatorname{dom}(R))$. Then

$$
\begin{array}{rlr}
& \inf _{u} & G(u)+F(K u)
\end{array} \quad \text { "Primal" }
$$

Relations between primal and dual variables

Corollary

Let the assumptions from Fenchel's Duality Theorem hold. If there exists a pair $(u, q) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ such that one of the following four equivalent conditions are met

$$
\begin{aligned}
& \text { 1. }-K^{T} q \in \partial G(u), \quad q \in \partial F(K u), \\
& \text { 2. }-K^{T} q \in \partial G(u), \quad K u \in \partial F^{*}(q), \\
& \text { 3. } u \in \partial G^{*}\left(-K^{T} q\right), \quad q \in \partial F(K u), \\
& \text { 4. } u \in \partial G^{*}\left(-K^{T} q\right), \quad K u \in \partial F^{*}(q),
\end{aligned}
$$

Then u solves the primal and q solves the dual optimization problem.

Example application of duality

Assume we want to find the best approximation to the input data f under the constraint that $D u$ must be bounded componentwise

$$
\min _{u} \frac{1}{2}\|u-f\|_{2}^{2} \text { s.t. }\|D u\|_{\infty} \leq c
$$

The dual problem can be solve with proximal gradient

$$
\begin{aligned}
& \max _{p}-\frac{1}{2}\left\|D^{*} p\right\|^{2}+\left\langle D^{*} p, f\right\rangle-c\|p\|_{1} \\
& \min _{p} \frac{1}{2}\left\|D^{*} p-f\right\|^{2}+c\|p\|_{1}
\end{aligned}
$$

Can we know in advance if the dual problem is more "friendly"?
Theorem
If $E: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$ is proper, closed and m-strongly convex, then E^{*} is proper, closed, convex and $1 / \mathrm{m}$-smooth.

Does this solve all problems?

Consider TV- ℓ^{1} denoising, i.e.,

$$
\begin{aligned}
& \inf _{u}\|u-f\|_{1}+\alpha\|D u\|_{2,1} \\
= & \inf _{u} \sup _{q}\|u-f\|_{1}+\alpha\langle q, D u\rangle-\delta_{\|\cdot\|_{2, \infty} \leq 1}(q) \\
= & \sup _{q} \inf _{u}\|u-f\|_{1}+\alpha\langle q, D u\rangle-\delta_{\|\cdot\|_{2, \infty} \leq 1}(q) \\
= & \sup _{q}\left(-\sup _{u}\left\langle-\alpha D^{*} q, u\right\rangle-\|u-f\|_{1}\right)-\delta_{\|\cdot\|_{2, \infty} \leq 1}(q) \\
= & \sup _{q}\left\langle\alpha D^{*} q, f\right\rangle-\delta_{\|\cdot\|_{\infty} \leq 1}\left(-\alpha D^{*} q\right)-\delta_{\|\cdot\|_{2, \infty} \leq 1}(q)
\end{aligned}
$$

The problem did not become easier. We will see next week that we can work on the saddle-point problem directly.

[^0]: ${ }^{1}$ This absolutely non-trivial. Consider $S(v, q)=\cos (v+q), D=C=\mathbb{R}$.

