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Summary: descent methods

For energies of the form
u* € arg m]iRn F(u) + G(u),
ueR™

for proper, closed, convex F': R® - R, G : R” — R U {00}, with F'
additionally being L-smooth, we discussed

Gradient descent: G =0
Gradient projection: G = §¢

Proximal gradient: G simple (easy to compute prox)

Convergence rates
Energy convergence in O(1/k) for "plain” method
Energy convergence in O(1/k?) for Nesterov's method

Strongly convex energies, convergence O(c*) for energy/iterates.
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Limitations of Direct Gradient Projection

Given D : RXmXe _ RnmX2¢ the finite difference operator, consider the
total variation denoising problem

.1
u* € argmin o lu — f[I3 + af| Dulla.1,
u

Is subgradient descent the best we can do despite strong convexity?

Let's try to remove D from the || - ||2,1 by re-formulating the energy:
lgll = max{q, g)
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Alternative Formulation

The previous simple observation tells us that

lgllan =D llgill = > masx(qi, g:) = max > g, g:) = max (g.q)
i i =

lail <14 a1

lgllz = max <g q)

llgll2,00 <

We may write

1
min — |ju — f||2+a||Du||21 —HllIl*H’LL*fHQ#*OL max (Du,q)
u 2 llall2,0 <1

: 2
=min max + a{Du,
in | max_ 3= fI3 +a(Du.)

Can we switch min and max?
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Alternative Formulation of TV Minimization

Theorem (Rockafellar, Convex Analysis, 37.3.21)

Let C and D be non-empty closed convex sets in R™ and R™,
respectively, and let S be a continuous finite concave-convex function on
C x D. If either C or D is bounded, one has

inf sup S(v,q) = sup inf S(v,q).
veD qec qeC vED

We can therefore compute

1 . 1
min = |lu — f[3 + e Dully =min max_=|lu— f|3 + a(Du,q)
uw 2 U |gll2,00<1

! 2
= max min_|ju— + a(Du,
lgll2,00<1 u 2” f||2 < q>

1This absolutely non-trivial. Consider S(v,q) = cos(v+q), D = C =R.
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Alternative Formulation of TV Minimization

Now the inner minimization problem obtains its optimum at

0=u—f+aD"q,
=u=f—aD"q.

The remaining problem in ¢ becomes

max *Ilf —aD*q— f|5+ a(D(f — aD*q),q)
llqll2,c0<1 2

= D* D D* 2
xS laD’gl +a(Df.q) - aD*dl}

— max_—laD*ql3 +a(DF.
lall2.m <1 2” ql3 +a(Df,q)

Duality



Alternative Formulation of TV Minimization

Since we prefer minimizations over maximizations, we write

q = argmax —*IlaD*q - fl3

llall2,00 <1
s 2
G = argmin — HD*
llall2,00 <1 @2
2
Gg= argeném 5 HD* - where C' = {q € R"™*%¢ | ||¢|l2.00 < 1}
q 2

Minimization of a convex, proper, closed, L-smooth function over a

convex set C'. We can solve it with gradient projection: .

" =mc <q"”' - TD(D*q’“ - i))
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Can we Generalize this Reformulation? Conjugation

The key idea of our reformulation is

lgll = maxig. g)

Definition

We define the convex conjugate of the function E : R — RU {00} to be

E*(p) = sup ((u,p) — E(u)).

Lemma
Convexity of the Convex Conjugate The convex conjugate

E*(p) = sup ((u,p) = E(u)).

of any proper function E : R™ — R U {oo} is convex. If E is closed, E*
Dizldso closed.



Convex Conjugate Rules

Scalar multiplication :

E(u) = aE(u) = E*(p) = aE*(p/a)
Separable sum:
E(ui,u) = Er(u1) + Ea(uz) = E"(p1,p2) = E{(p1) + E3(p2)
Sum rule for Fq, Es closed, convex, proper:
() = Ey(w) + Ea(w) = E'() = _inf  Ei(p1)+ E3(p2).
Translation:
E(u) = E(u—1b) = E*(p)=E*(p) + (p,b)
Additional affine functions:
E(u)=Eu) + (bu)+a = E*(p)=FE*(p—b) —a
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Examples of Convex Conjugates

Do you see a pattern?

E(u) = 2u2 leads to E*(p) = %p
B(w) = [uls leads to B ( { vl <
00 else.
0 if|lplle <1,
E(u) = ||ul|1 leads to E*( { i lelloe <
00 else.

E(u) = ||ul|s leads to E*(p) = {
00 else.

0 if <1
B(u) = if flufl> <1, leads to E*(p) = ||p||2-
00 else.

0 if ||u oo < 17 *

E(u) = lullee < leads to E*(p) = ||p||1-
00 else.
0 if <1,

E(u) = if fJull < leads to E™(p) = [|p||co-
00 else.
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Fenchel-Young Inequality

Theorem (Fenchel-Young Inequality)

Let E be proper, convex and closed, uw € dom(E) C R"™, and p € R",
then E(u) + E*(p) > {(u,p). Equality holds if and only if p € OE(u).

Theorem (Biconjugate)

Let E: R™ — RU {oo} be proper, convex and closed, then E** = E.

For TV minimization we replaced || Dul|2,1 by

(I~ Ml2,0)™ (Du) = Sup {p, D) = )5 o<1 (P)-
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Convex conjugation

Theorem
Let E be proper, convex and closed, then the following two conditions
are equivalent:

p € OE(u)
u € OE*(p)
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Fenchel duality

Theorem (Fenchel’s Duality)

Let H:R" - RU{oo} and R: R™ — R U {co} be proper, closed,
convex functions and let there exist a u € ri(dom(H)) such that
Ku € rildom(R)). Then

inf,, G(u) + F(Ku) "Primal”

= inf,sup, G(u)+ (g, Ku) — F*(q)
"Saddle point”

= sup,inf, G(u)+ (¢, Ku) — F*(q)

= sup, —G*(—=K*q) — F*(q) "Dual”
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Relations between primal and dual variables

Corollary

Let the assumptions from Fenchel’s Duality Theorem hold. If there exists
a pair (u,q) € R™ x R™ such that one of the following four equivalent

conditions are met
1. —KTq € 0G(u), q€ OF(Ku),
2. —KTq € 0G(u), Kue€ dF*(q),
3. u € 0G*(-KTq), q€0F(Ku),
4. u € 0G*(-KTq), KucdF*(q),

Then u solves the primal and q solves the dual optimization problem.
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Example application of duality

Assume we want to find the best approximation to the input data f
under the constraint that Du must be bounded componentwise

1
min = [lu— fII3 s:t. | Dufl < c,
u 2
The dual problem can be solve with proximal gradient
1
max — S ID7pII* + (D*p, f) = ellpllx
: 1 D* 2
min_ ||D*p — f[I° + clpllx
p 2
Can we know in advance if the dual problem is more “friendly”?

Theorem
If E:R™ — R is proper, closed and m-strongly convex, then E* is
proper, closed, convex and 1/m-smooth.
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Does this solve all problems?

Consider TV-£! denoising, i.e.,
inf [lu = flli + af|Dull2,
=infsup [lu = flly + alg, Du) = o)), . <1(q)
q

=supinf [lu — flly + alg, Du) = b, . <1(9)
q

~oup <sup (—aD*q,u) — |[u— fh) B ncr(@)
q u

=sup (aD%q, f) = ). j<1(=aD*q) = )., .<1(q)

The problem did not become easier. We will see next week that we can

work on the saddle-point problem directly.
Duality 16



	Duality
	Motivation
	Fenchel Duality


