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Summary: descent methods

For energies of the form

u∗ ∈ arg min
u∈Rn

F (u) +G(u),

for proper, closed, convex F : Rn → R, G : Rn → R ∪ {∞}, with F

additionally being L-smooth, we discussed

Gradient descent: G ≡ 0

Gradient projection: G = δC

Proximal gradient: G simple (easy to compute prox)

Convergence rates

Energy convergence in O(1/k) for ”plain” method

Energy convergence in O(1/k2) for Nesterov’s method

Strongly convex energies, convergence O(ck) for energy/iterates.
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Limitations of Direct Gradient Projection

Given D : Rn×m×c → Rnm×2c the finite difference operator, consider the

total variation denoising problem

u∗ ∈ argmin
u

1

2
‖u− f‖22 + α‖Du‖2,1,

Is subgradient descent the best we can do despite strong convexity?

Let’s try to remove D from the ‖ · ‖2,1 by re-formulating the energy:

‖g‖ = max
|q|≤1
〈q, g〉
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Alternative Formulation

The previous simple observation tells us that

‖g‖2,1 =
∑
i

‖gi‖ =
∑
i

max
|qi|≤1

〈qi, gi〉 = max
|qi|≤1

∑
i

〈qi, gi〉 = max
‖qi‖≤1

〈g, q〉

‖g‖2,1 = max
‖q‖2,∞≤1

〈g, q〉

We may write

min
u

1

2
‖u− f‖22 + α‖Du‖2,1 = min

u

1

2
‖u− f‖22 + α max

‖q‖2,∞≤1
〈Du, q〉

= min
u

max
‖q‖2,∞≤1

1

2
‖u− f‖22 + α〈Du, q〉

Can we switch min and max?
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Alternative Formulation of TV Minimization

Theorem (Rockafellar, Convex Analysis, 37.3.21)

Let C and D be non-empty closed convex sets in Rn and Rm,

respectively, and let S be a continuous finite concave-convex function on

C ×D. If either C or D is bounded, one has

inf
v∈D

sup
q∈C

S(v, q) = sup
q∈C

inf
v∈D

S(v, q).

We can therefore compute

min
u

1

2
‖u− f‖22 + α‖Du‖1 = min

u
max

‖q‖2,∞≤1

1

2
‖u− f‖22 + α〈Du, q〉

= max
‖q‖2,∞≤1

min
u

1

2
‖u− f‖22 + α〈Du, q〉

1This absolutely non-trivial. Consider S(v, q) = cos(v + q), D = C = R.
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Alternative Formulation of TV Minimization

Now the inner minimization problem obtains its optimum at

0 = u− f + αD∗q,

⇒u = f − αD∗q.

The remaining problem in q becomes

max
‖q‖2,∞≤1

1

2
‖f − αD∗q − f‖22 + α〈D(f − αD∗q), q〉

= max
‖q‖2,∞≤1

1

2
‖αD∗q‖22 + α〈Df, q〉 − ‖αD∗q‖22

= max
‖q‖2,∞≤1

−1

2
‖αD∗q‖22 + α〈Df, q〉
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Alternative Formulation of TV Minimization

Since we prefer minimizations over maximizations, we write

q̂ = argmax
‖q‖2,∞≤1

−1

2
‖αD∗q − f‖22

q̂ = argmin
‖q‖2,∞≤1

1

2

∥∥∥∥D∗q − f

α

∥∥∥∥2
2

q̂ = argmin
q∈C

1

2

∥∥∥∥D∗q − f

α

∥∥∥∥2
2

where C = {q ∈ Rnm×2c | ‖q‖2,∞ ≤ 1}

Minimization of a convex, proper, closed, L-smooth function over a

convex set C. We can solve it with gradient projection: .

qk+1 = πC

(
qk − τD

(
D∗qk − f

α

))
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Can we Generalize this Reformulation? Conjugation

The key idea of our reformulation is

‖g‖ = max
|q|≤1
〈q, g〉

Definition
We define the convex conjugate of the function E : Rn → R∪{∞} to be

E∗(p) = sup
u∈Rn

(〈u, p〉 − E(u)) .

Lemma
Convexity of the Convex Conjugate The convex conjugate

E∗(p) = sup
u∈Rn

(〈u, p〉 − E(u)) .

of any proper function E : Rn → R ∪ {∞} is convex. If E is closed, E∗

is also closed.

Proof: Notes
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Convex Conjugate Rules

Scalar multiplication :

E(u) = αẼ(u) ⇒ E∗(p) = αẼ∗(p/α)

Separable sum:

E(u1, u2) = E1(u1) + E2(u2) ⇒ E∗(p1, p2) = E∗1 (p1) + E∗2 (p2)

Sum rule for E1, E2 closed, convex, proper:

E(u) = E1(u) + E2(u) ⇒ E∗(p) = inf
p=p1+p2

E∗1 (p1) + E∗2 (p2).

Translation:

E(u) = Ẽ(u− b) ⇒ E∗(p) = Ẽ∗(p) + 〈p, b〉

Additional affine functions:

E(u) = Ẽ(u) + 〈b, u〉+ a ⇒ E∗(p) = Ẽ∗(p− b)− a
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Examples of Convex Conjugates

Do you see a pattern?

E(u) = 1
2
u2 leads to E∗(p) = 1

2
p2

E(u) = ‖u‖2 leads to E∗(p) =

{
0 if ‖p‖2 ≤ 1,

∞ else.

E(u) = ‖u‖1 leads to E∗(p) =

{
0 if ‖p‖∞ ≤ 1,

∞ else.

E(u) = ‖u‖∞ leads to E∗(p) =

{
0 if ‖p‖1 ≤ 1,

∞ else.

E(u) =

{
0 if ‖u‖2 ≤ 1,

∞ else.
leads to E∗(p) = ‖p‖2.

E(u) =

{
0 if ‖u‖∞ ≤ 1,

∞ else.
leads to E∗(p) = ‖p‖1.

E(u) =

{
0 if ‖u‖1 ≤ 1,

∞ else.
leads to E∗(p) = ‖p‖∞.
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Fenchel-Young Inequality

Theorem (Fenchel-Young Inequality)

Let E be proper, convex and closed, u ∈ dom(E) ⊂ Rn, and p ∈ Rn,

then E(u) + E∗(p) ≥ 〈u, p〉. Equality holds if and only if p ∈ ∂E(u).

Theorem (Biconjugate)

Let E : Rn → R ∪ {∞} be proper, convex and closed, then E∗∗ = E.

For TV minimization we replaced ‖Du‖2,1 by

(‖ · ‖2,1)∗∗(Du) = sup
p
〈p,Du〉 − δ‖·‖2,∞≤1(p).
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Convex conjugation

Theorem
Let E be proper, convex and closed, then the following two conditions

are equivalent:

p ∈ ∂E(u)

u ∈ ∂E∗(p)
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Fenchel duality

Theorem (Fenchel’s Duality)

Let H : Rn → R ∪ {∞} and R : Rm → R ∪ {∞} be proper, closed,

convex functions and let there exist a u ∈ ri(dom(H)) such that

Ku ∈ ri(dom(R)). Then

infu G(u) + F (Ku) ”Primal”

= infu supq G(u) + 〈q,Ku〉 − F ∗(q)
”Saddle point”

= supq infu G(u) + 〈q,Ku〉 − F ∗(q)

= supq −G∗(−K∗q)− F ∗(q) ”Dual”
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Relations between primal and dual variables

Corollary

Let the assumptions from Fenchel’s Duality Theorem hold. If there exists

a pair (u, q) ∈ Rn × Rn such that one of the following four equivalent

conditions are met

1. −KT q ∈ ∂G(u), q ∈ ∂F (Ku),

2. −KT q ∈ ∂G(u), Ku ∈ ∂F ∗(q),

3. u ∈ ∂G∗(−KT q), q ∈ ∂F (Ku),

4. u ∈ ∂G∗(−KT q), Ku ∈ ∂F ∗(q),

Then u solves the primal and q solves the dual optimization problem.
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Example application of duality

Assume we want to find the best approximation to the input data f

under the constraint that Du must be bounded componentwise

min
u

1

2
‖u− f‖22 s.t. ‖Du‖∞ ≤ c,

The dual problem can be solve with proximal gradient

max
p
− 1

2
‖D∗p‖2 + 〈D∗p, f〉 − c‖p‖1

min
p

1

2
‖D∗p− f‖2 + c‖p‖1

Can we know in advance if the dual problem is more “friendly”?

Theorem
If E : Rn → R̄ is proper, closed and m-strongly convex, then E∗ is

proper, closed, convex and 1/m-smooth.
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Does this solve all problems?

Consider TV-`1 denoising, i.e.,

inf
u
‖u− f‖1 + α‖Du‖2,1

= inf
u

sup
q
‖u− f‖1 + α〈q,Du〉 − δ‖·‖2,∞≤1(q)

= sup
q

inf
u
‖u− f‖1 + α〈q,Du〉 − δ‖·‖2,∞≤1(q)

= sup
q

(
− sup

u
〈−αD∗q, u〉 − ‖u− f‖1

)
− δ‖·‖2,∞≤1(q)

= sup
q
〈αD∗q, f〉 − δ‖·‖∞≤1(−αD∗q)− δ‖·‖2,∞≤1(q)

The problem did not become easier. We will see next week that we can

work on the saddle-point problem directly.
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