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Recall: DUALITY

Theorem (Fenchel’s Duality)

Let G : Rn → R ∪ {∞} and F : Rm → R ∪ {∞} be proper, closed,

convex functions and u ∈ ri(dom(G)) such that Ku ∈ ri(dom(F )). Then

infu G(u) + F (Ku) ”Primal”

= infu supq G(u) + 〈q,Ku〉 − F ∗(q) ”Saddle point”

= supq infu G(u) + 〈q,Ku〉 − F ∗(q) ”Saddle point”

= supq −G∗(−K∗q)− F ∗(q) ”Dual”

We used the dual formulation to solve problems of the form

minu ‖u− f‖2 + α‖Du‖1 that we could not directly because the

proximal operator of ‖Du‖1 is not simple.
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Motivation

But we still do not have a method to solve problems of the form

min
u
‖u− f‖1 + α‖Du‖1

although the proximal mapping of the `1-norm is easy to compute.

Can we build an algorithm around

min
u

max
p

G(u) + 〈p,Ku〉 − F ∗(p)?

Proximal mapping as implicit gradient descent

For differentiable E, the proximal mapping does an implicit gradient step

uk+1 = proxτE(uk) ⇒ uk+1 = uk − τ∇E(uk+1)
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The primal-dual hybrid gradient algorithm

Let us define

PD(u, p) := G(u) + 〈p,Ku〉 − F ∗(p)

and try to alternate implicit ascent steps in p with implicit descent steps

in u:

pk+1 = prox−σPD(uk,·)(p
k)

uk+1 = proxτPD(·,pk+1)(u
k)

One finds

pk+1 =prox−σPD(uk,·)(p
k),

= argmin
p

1

2
‖p− pk‖2 + σF ∗(p)− σ〈Kuk, p〉

= argmin
p

1

2
‖p− pk − σKuk‖2 + σF ∗(p)

=proxσF∗(p
k + σKuk)PDHG 4



The primal-dual hybrid gradient algorithm

Let us define

PD(u, p) := G(u) + 〈p,Ku〉 − F ∗(p)

and try to alternate implicit accent steps in p with implicit descent steps

in u:

pk+1 = proxσF∗(p
k + σKuk)

uk+1 = proxτPD(·,pk+1)(u
k)

One finds

uk+1 =proxτPD(·,pk+1)(u
k),

= argmin
u

1

2
‖u− uk‖2 + τG(u) + τ〈Ku, pk+1〉

= argmin
u

1

2
‖u− uk + τK∗pk+1‖2 + τG(u)

=proxτG(uk − τK∗pk+1)
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Primal-dual hybrid gradient method

We found

pk+1 = proxσF∗(p
k + σKuk),

uk+1 = proxτG(uk − τK∗pk+1).

One should make one (currently non intuitive) modification:

Definition (PDHG)

We will call the iteration

pk+1 = proxσF∗(p
k + σKūk),

uk+1 = proxτG(uk − τK∗pk+1),

ūk+1 = 2uk+1 − uk.

(PDHG)

the Primal-Dual Hybrid Gradient Method. As we will see, it converges

if τσ < 1
‖K‖2 .
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References for PDHG

PDHG is commonly referred to as the Chambolle and Pock algorithm.

Nevertheless, several authors contributed to its development.

Here is a (likely incomplete) list of relevant papers:

Pock, Cremers, Bischof, Chambolle, A convex relaxation approach

for computing minimal partitions.

Esser, Zhang, Chan, A General Framework for a Class of First Order

Primal-Dual Algorithms for Convex Optimization in Imaging Science.

Chambolle, Pock, A first-order primal-dual algorithm for convex

problems with applications to imaging.

Zhang, Burger Osher, A unified primal-dual algorithm framework

based on Bregman iteration.
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Understanding PDHG

Why does PDHG work?

1. Sanity check: If the algorithm converges, it does so to a minimizer.

2. Why does PDHG converge? Computation on the board for

uk+1 = proxτG(uk − τK∗pk)

ūk+1 = 2uk+1 − uk

pk+1 = proxσF∗(p
k + σKūk+1). (1)

(
0

0

)
∈

(
∂G KT

−K ∂F ∗

)
︸ ︷︷ ︸

=:T

(
uk+1

pk+1

)
+

(
1
τ I −KT

−K 1
σ I

)
︸ ︷︷ ︸

=:M

(
uk+1 − uk

pk+1 − pk

)

for the set-valued operator T : Rn × Rn → P(Rn)× P(Rn)
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Fixed point iteration

We have reformulated the update rule to

0 ∈ Tzk+1 +M(zk+1 − zk)

for a set-valued operator T and a matrix M . Let us define the process of

computing the next iterate as the resolvent

zk+1 = (M + T )−1(Mzk). (CPPA)

We already know an iteration of this form, the proximal point algorithm

uk+1 = proxE(uk) = (I + τ∂E)−1(uk)

So we can use the same tools to analyze its convergence. We will call it a

customized proximal point algorithm (CPPA).
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Convergence of the CPPA

Remember what we did for the proximal gradient algorithm?

→ Show that proxE = (I + τ∂E)−1 is firmly nonexpansive, i.e.

averaged with α = 1/2.

We will do something similar by generalizing the crucial inequality

〈pu − pv, u− v〉 ≥ 0 ∀u, v, pu ∈ ∂E(u), pv ∈ ∂E(v)

Definition (Monotone Operator)

A set valued operator T is called monotone if the inequality

〈pu − pv, u− v〉 ≥ 0

holds for all u, v, pu ∈ T (u) and pv ∈ T (v).
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Convergence of the CPPA

This has the potential to show convergence of

0 ∈ T (zk+1) + zk+1 − zk, (PPA)

provided that the above iteration is well-defined, i.e. the resolvent

(I + T )−1(z) is defined for any z ∈ Rn. This is a technical issue which

can be resolved by considering maximal monotone operators. In our

convex settings, this is not an issue.

Definition
The relation T is maximal monotone if there is no monotone operator

that properly contains it as a subset of Rn × Rn.

In other words, if the monotone operator T is not maximal, then there is

(x, u) /∈ T such that T ∪ {(x, u)} is monotone.
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Examples of maximal monotone operators

Lemma
E : Rn → R̄, then ∂E is a monotone operator. If E is closed convex and

proper then ∂E is maximal monotone.

Lemma
A continuous monotone function F : Rn → R with dom(F ) = Rn is

maximal.

Lemma
If T is maximal monotone, then the resolvent RT = (I + αT )−1 with

α > 0 and the Caley operator CT = 2RT − I are nonexpansive functions.
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Theorem (Convergence of Generalized Proximal Point

Algorithm)

Let T be a maximal monotone operator, and let there exist a z such that

0 ∈ T (z). Then the (generalized) proximal point algorithm

zk+1 = (T + I)−1(zk)

0 ∈ T (zk+1) + zk+1 − zk (2)

converges to a point z̃ with 0 ∈ T (z̃).

Proof.
If T is maximal monotone, the resolvent RT = (T + I)−1 and the Caley

operator CT = 2RT − I are nonexpansize. Since RT = 1
2I + 1

2CT , the

resolvent RT is an averaged operator and the generalized proximal point

algorithm is a fixed-point iteration of an averaged operator that

converges by Krasnoselskii-Mann Theorem.
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Convergence of the CPPA

But we wrote the PDHG algorithm as

0 ∈ T (zk+1) +Mzk+1 −Mzk, (3)

i.e. with an additional matrix M .

Idea: For symmetric positive definite matrices, write M = LTL and

rewrite (CPPA) as

0 ∈ L−TTL−1(ζk+1) + ζk+1 − ζk, (CPPA)

with ζk = Lzk, and

L−TTL−1(ζ) = {q ∈ Rn | q = L−T p, p ∈ T (L−1ζ)}.

Lemma
If T is monotone, then L−TTL−1 is monotone, too.

Proof: Exercise.
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Convergence conclusions CPPA

Theorem (Convergence CPPA)

Let T be a maximally monotone operator. Let there exist a z such that

0 ∈ T (z), and let the matrix M be symmetric positive definite. Then the

customized proximal point algorithm

zk+1 = (M + T )−1(Mzk)

converges to a ẑ with 0 ∈ T (z).
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Convergence conclusions PDHG

As the primal-dual hybrid gradient method can be rewritten (after an

index shift) as(
0

0

)
∈

(
∂G KT

−K ∂F ∗

)
︸ ︷︷ ︸

=:T

(
uk+1

pk+1

)
+

(
1
τ I −KT

−K 1
σ I

)
︸ ︷︷ ︸

=:M

(
uk+1 − uk

pk+1 − pk

)
.

Theorem
Convergence PDHG The operator T is maximally monotone. For

τσ < 1
‖K‖2 the matrix M in the PDHG algorithm is positive definite.

Hence, PDHG converges.
(Assuming F and G to be proper, closed, and convex, assuming there is a u ∈ ri(G)

such that Ku ∈ ri(F ), and assuming the existence of a minimizer).
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ROF Denoising

minP (u) = min
u

1

2
‖u− f‖2 + α‖Ku‖2,1

with K being a discretization of the multichannel gradient operator.
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ROF Denoising

We write

min
u
P (u) = min

u
max
p

1

2
‖u− f‖2 + 〈Ku, p〉 − ι‖·‖2,∞≤α(p).

The (PDHG) updates are

pk+1 = proxσF∗(p
k + σKūk)

uk+1 = proxτG(uk − τK∗pk+1),

ūk+1 = 2uk+1 − uk.

which in this case amounts to

pk+1 = argmin
p

1

2
‖p− (pk + σKūk)‖2 + σι‖·‖2,∞≤α(p),

uk+1 = argmin
u

1

2
‖u− (uk − τK∗pk+1)‖2 +

τ

2
‖u− f‖2

=
uk − τK∗pk+1 + τf

1 + τ

ūk+1 = 2uk+1 − uk.PDHG 18



TV-L1 Denoising

minP (u) = min
u
‖u− f‖1 + α‖Ku‖2,1

with K being a discretization of the multichannel gradient operator.
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TV-L1 Denoising

We write

min
u
P (u) = min

u
max
p

1

2
‖u− f‖1 + 〈Ku, p〉 − ι‖·‖2,∞≤α(p).

The (PDHG) updates are

pk+1 = proxσF∗(p
k + σKūk)

uk+1 = proxτG(uk − τK∗pk+1),

ūk+1 = 2uk+1 − uk.

which in this case amounts to

An exercise! :-)
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TV-Inpainting

minP (u) = min
u
ιf|I (u) + α‖Ku‖2,1

with K being a discretization of the color gradient operator, and

ιf|I (u) =

{
0 if ui = fi for all i ∈ I,
∞ otherwise.

.
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TV-Inpainting

We write

min
u
P (u) = min

u
max
p

ιf|I (u) + 〈Ku, p〉 − ι‖·‖2,∞≤α(p).

The (PDHG) updates are

pk+1 = proxσF∗(p
k + σKūk)

uk+1 = proxτG(uk − τK∗pk+1),

⇒ uk+1
i =

{
fi if i ∈ I,
(uk − τK∗pk+1)i otherwise.

ūk+1 = 2uk+1 − uk.
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TV-Deblurring

minP (u) = min
u

1

2
‖Au− f‖2 + α‖Ku‖2,1

with K being a discretization of the multichannel gradient operator, A

being a convolution with a blur kernel.
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TV-Deblurring - Option 1

We write

min
u
P (u) = min

u
max
p

1

2
‖Au− f‖2 + 〈Ku, p〉 − ι‖·‖2,∞≤α(p).

The (PDHG) updates are

pk+1 = proxσF∗(p
k + σKūk)

uk+1 = proxτG(uk − τK∗pk+1),

ūk+1 = 2uk+1 − uk.

which in this case amounts to

pk+1 = argmin
p

1

2
‖p− (pk + σKūk)‖2 + σι‖·‖2,∞≤α(p),

uk+1 = argmin
u

1

2
‖u− (uk − τK∗pk+1)‖2 +

τ

2
‖Au− f‖2

= (I + τA∗A)−1(uk − τK∗pk+1 + τf)

ūk+1 = 2uk+1 − uk.
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TV-Deblurring - Option 2

We write

min
u
P (u)

= min
u

max
p,q
〈Au− f, q〉 − 1

2
‖q‖2 + 〈Ku, p〉 − ι‖·‖2,∞≤α(p)

= min
u

max
p,q

〈(
A

K

)
u,

(
q

p

)〉
− 〈f, q〉 − 1

2
‖q‖2 − ι‖·‖2,∞≤α(p)

Now we have

F ∗(p, q) = 〈f, q〉+
1

2
‖q‖2 + ι‖·‖2,∞≤α(p)

G(u) = 0

K̃ =

(
A

K

)
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TV-Deblurring - Option 2

The (PDHG) updates are

qk+1 = argmin
q

1

2
‖q − (qk + σAūk)‖2 + σ〈f, q〉+

σ

2
‖q‖2,

pk+1 = argmin
p

1

2
‖p− (pk + σKūk)‖2 + σι‖·‖2,∞≤α(p),

uk+1 = uk − τK∗pk+1 − τA∗qk+1

ūk+1 = 2uk+1 − uk.
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TV-Zooming

minP (u) = min
u

1

2
‖Au− f‖2 + α‖Ku‖2,1

with K being a discretization of the multichannel gradient operator,

A = DB, with B being a convolution with a blur kernel, and D being a

downsampling, e.g. a matrix

D =


1 0 0 0 0 ... ...

0 0 1 0 0 ... ...

0 0 0 0 1 ... ...

... ... ... ... ... ... ...

... ... ... ... ... ... ...


PDHG implementation: Option 2 from the previous example.
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TV-Zooming

Input data

Nearest neighbor TV Zooming

PDHG 28



Image Segmentation

minP (u) = min
u
ι∆(u) + ι≥0(u) + 〈u, f〉+ α‖Ku‖2,1

where K : Rn×m×c → Rnmc×2 being a discretization of the multichannel

gradient operator, and

ι∆(u) =

{
0 if

∑
k ui,j,k = 1, ∀(i, j)

∞ else.

ι≥0(u) =

{
0 if ui,j,k ≥ 0, ∀(i, j, k)

∞ else.
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Image Segmentation

Upper row: data term minimization (=kmeans assignment), lower row:

variational method
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Image Segmentation

Option 1: We solve

min
u

max
p

ι∆(u) + ι≥0(u) + 〈u, f〉+ 〈Ku, p〉 − ι‖·‖2,∞≤α(p).

→ Primal proximal operator: Projection onto unit simplex.

Option 2: We solve

min
u

max
p.q
〈Su− 1, q〉+ ι≥0(u) + 〈u, f〉+ 〈Ku, p〉 − ι‖·‖2,∞≤α(p).

where (Su)i,j =
∑
k ui,j .

→ Very simple proximal operators, but additional variable.

PDHG 31



Final remark for applications

If you are too lazy to compute the proximity operator of F ∗

p̃ = proxσF∗(z)

= arg min
p

1

2
‖p− z‖2 + σF ∗(p)

⇒ 0 = p̃− z + σũ, ũ ∈ ∂F ∗(p̃)

⇒ 0 = ũ− z/σ +
1

σ
p̃, p̃ ∈ ∂F (ũ)

⇒ ũ = prox 1
σF

(z/σ)

⇒ p̃ = z − σ prox 1
σF

(z/σ)

Lemma (Moreau’s identity)

If you know proxF you also know proxF∗ ,

proxσF∗(z) = z − σ prox 1
σF

(z/σ).
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Convergence rate

We have seen: PDHG works very well on problems of the form

minG(u) + F (Ku),

for which F and G are simple.

We get a convergence rate of

min
j∈{0,...,k}

‖(I + L−TTL−1)(ξk)− ξk‖2 ≤ C ‖ξ
0 − ξ0‖
k + 1

for ξk = L(uk, pk), L being the matrix square-root of M , and C being a

constant.

What if our problem is more friendly? E.g. what if G or F or both are

strongly convex?
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Either G or F ∗ is strongly convex

pk+1 = proxσkF∗(p
k + σkKū

k),

uk+1 = proxτkG(uk − τkK∗pk+1),

θk =
1√

1 + 2γτk
,

τk+1 = θkτk, σk+1 = σk/θk

ūk+1 = uk+1 + θk(uk+1 − uk).

(PDHG2)

for τ0σ0 ≤ ‖K‖2, and G being γ-strongly convex.

Theorem
For strongly convex G and ε > 0, there exists an N0 such that for any

N ≥ N0:

‖ũ− uN‖2 ≤ 1 + ε

γ2N2

(
‖ũ− u0‖2

τ2
0

+ ‖K‖2‖p̃− p0‖2
)
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Discussion of the convergence orders

If part of the energy is L smooth, the gradient methods obtain linear

convergence on strongly convex energies.

As L-smoothness of the primal corresponds to 1/L-strong convexity of

the convex conjugate. It is natural to ask: what can we do if we

additionally assume F to be L-smooth, i.e., assume F ∗ to be strongly

convex?
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Two strongly convex functions

Consider

pk+1 = proxσF∗(p
k + σKūk),

uk+1 = proxτG(uk − τK∗pk+1),

ūk+1 = uk+1 + θ(uk+1 − uk).

(PDHG3)

Theorem ( Linear convergence of strongly convex functions )

For µ ≤ 2
√
γδ/‖K‖, τ = µ/(2γ), σ = µ/(2δ), θ ∈ [1/(1 + µ), 1], G

being γ-strongly convex and F ∗ being δ-strongly convex, there exists

ω < 1, such that the iterates of (PDHG3) meet

γ‖uN − ũ‖2 + (1− ω)δ‖pN − p̃‖2 ≤ ωN (γ‖u0 − ũ‖2 + δ‖p0 − p̃‖2).
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Summary: descent methods

For energies of the form

u∗ ∈ arg min
u∈Rn

F (u) +G(u),

for proper, closed, convex F : Rn → R, G : Rn → R ∪ {∞}, with F

additionally being L-smooth, we discussed

Gradient descent: G ≡ 0

Gradient projection: G = δC

Proximal gradient: G simple (easy to compute prox)
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Convex Conjugate: Geometric interpretation

Definition
Let E : Rn → R ∪ {∞} be any function, not necessarily convex, we

define its convex conjugate to be

E∗(p) = sup
u∈Rn

[〈u, p〉 − E(u)] .

For E : R 7→ R and p ∈ R, the conjugate function E∗(p) is the maximum

gap between the linear function pu and E(u) (dashed line).

Fig.: Source: Boyd, and Vandenberghe. Convex optimization theory.2004
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Convex Conjugate: Geometric interpretation

Definition
Let E : Rn → R ∪ {∞} be any function, not necessarily convex, we

define its convex conjugate to be

E∗(p) = sup
u∈Rn

[〈u, p〉 − E(u)] .

The points of the epigraph of E∗ parameterize the affine functions

minorizing E.

(p, α) ∈ epi(E∗) ⇐⇒ α ≥ sup
u∈Rn

[〈u, p〉 − E(u)]

⇐⇒ E(u) ≥ 〈u, p〉 − α ∀u ∈ Rn. (4)

If the affine function l(u) = 〈p, u− α minorizes E, then the affine

function m(u) = 〈p, u−E∗(p) is the largest affine minorizer and satisfies

l(u) ≤ m(u) ≤ E(u).ADMM 39



Biconjugate

Lemma
The convex conjugate of any proper function E : Rn → R ∪ {∞} is

closed (or lower semi-continuous) and convex.

Note that E∗∗(u) ≤ E(u) because

E∗∗(u) = sup
p
〈p, u〉 − E∗(p) = sup

p
〈p, u〉 − sup

v
[〈p, v〉 − E(v)]

≤ sup
p
〈p, u〉 − [〈p, u〉 − E(u)] = E(u).

E∗∗ is the largest convex lower semi-continuous envelope of E.

conjugation reverses inequalities: if E ≤ F then E∗ ≥ F ∗.
The conjugate function is always convex and lower semi-continuous.

If E is proper, convex, and lower semi-continuous, then E∗∗ = E.

If Ê is a convex lower semi-continuous function s.t. Ê ≤ E, then

Ê∗∗ = Ê ≤ E∗∗.
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Duality

We showed that for E proper, convex and closed, E∗∗ = E.

Let G : Rn → R ∪ {∞} and F : Rm → R ∪ {∞} be proper, closed,

convex functions. Consider F (u) = F ∗∗(u) = supp 〈p, u〉 − F ∗(p) in

inf
u

G(u) + F (Ku)

inf
u

G(u) + sup
p
〈p,Ku〉 − F ∗(p)

inf
u

sup
p

G(u) + 〈p,Ku〉 − F ∗(p)

Switch inf and sup and apply G∗(−K∗p) = supu −[〈K∗p, u〉+G(u)]

sup
p

inf
u

G(u) + 〈p,Ku〉 − F ∗(p)

sup
p
−F ∗(p) + inf

u
G(u) + 〈K∗p, u〉

sup
p
−F ∗(p)− sup

u
−[G(u) + 〈K∗p, u〉]︸ ︷︷ ︸

G∗(K∗p)ADMM 41



Duality

Theorem (Fenchel’s Duality1)

Let G : Rn → R ∪ {∞} and F : Rm → R ∪ {∞} be proper, closed,

convex functions and let there exist a u ∈ ri(dom(G)) such that

Ku ∈ ri(dom(F )). Then

infu G(u) + F (Ku) ”Primal”

= infu supq G(u) + 〈q,Ku〉 − F ∗(q) ”Saddle point”

= supq infu G(u) + 〈q,Ku〉 − F ∗(q) ”Saddle point”

= supq −G∗(−K∗q)− F ∗(q) ”Dual”

1C.f. Rockafellar, Convex Analysis, Section 31
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Motivation for dual algorithms

With the descent algorithms from the previous lecture, we could not solve

u∗ ∈ argmin
u

1

2
‖u− f‖22 + α‖Du‖2,1

b we can solve its dual

q̂ = argmax
‖q‖2,∞≤1

−1

2
‖αD∗q − f‖22 = argmin

‖q‖2,∞≤1

1

2

∥∥∥∥D∗q − f

α

∥∥∥∥2

2

q̂ = argmin
q∈C

1

2

∥∥∥∥D∗q − f

α

∥∥∥∥2

2

where C = {q ∈ Rnm×2c | ‖q‖2,∞ ≤ 1} with projected gradient descent.

Recover û from optimality conditions of saddle-point −KT p̂ ∈ ∂G(û).

ADMM 43



Motivation for primal-dual algorithms

With the descent algorithms from the previous lecture, we could not solve

Consider TV-`1 denoising, i.e.,

inf
u
‖u− f‖1 + α‖Du‖2,1

nor its dual

sup
q
〈αD∗q, f〉 − δ‖·‖∞≤1(−αD∗q)− δ‖·‖2,∞≤1(q)

and directly worked with the saddle-point formulation

inf
u

sup
q
‖u− f‖1 + α〈q,Du〉 − δ‖·‖2,∞≤1(q)

inf
u

sup
q
G(u) + 〈q,Ku〉 − F ∗(q)
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Generic form Primal-Dual Algorithm

Remember the optimality conditions of the saddle point formulation

min
u

max
p

G(u) + 〈Ku, p〉 − F ∗(p)

were (
0

0

)
∈

(
∂G KT

−K ∂F ∗

)
︸ ︷︷ ︸

T

(
û

p̂

)
︸ ︷︷ ︸
ẑ

0 ∈ T (ẑ)

We could not compute ẑ directly. Therefore, given M � 0 we defined the

iteration T (zk+1) +M(zk+1 − zk) such that

ẑ is a fixed point of 0 ∈ T (zk+1) +M(zk+1 − zk) ⇐⇒ 0 ∈ T (ẑ)
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Generic form Primal-Dual Algorithm

In terms of (û, p̂) = ẑ we have

(
0

0

)
∈

(
∂G KT

−K ∂F ∗

)(
uk+1

pK+1

)
+

=:M︷ ︸︸ ︷(
M1 M3

M4 M2

)(
uk+1 − uk

pK+1 − pk

)

0 ∈ ∂G(uk+1) +KT pk+1 +M1(uk+1 − uk) +M3(pk+1 − pk)

0 ∈ −Kuk+1 + ∂F ∗(pk+1) +M4(uk+1 − uk) +M2(pk+1 − pk)

for sequential updates, we set M3 = −KT , or M4 = K

for a symmetric M , we set M3 = (M4)T ,

for M � 0, many options. In PDHG M1 = 1
τ I, M2 = 1

σ I

The choice of M1 and M2 does not influence the convergence rate
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ADMM

Let us consider(
0

0

)
∈

(
∂G KT

−K ∂F ∗

)(
uk+1

pK+1

)
+

(
1
λI −KT

−K λKKT

)
︸ ︷︷ ︸

=:M

(
uk+1 − uk

pK+1 − pk

)
.

The resulting M is only positive semi-definite. Exploit fixed point

iterations of averaged operators in a different way to show convergence.

If we decompose this equation component by component, in u we have

0 ∈ ∂G(uk+1) +
1

λ
(uk+1 − uk) +KT pk

0 ∈ λ∂G(uk+1) + uk+1 − (uk − λKT pk)

uk+1 = argmin
u

λG(u) +
1

2
‖u− (uk − λKT pk)‖2

uk+1 = proxλG(uk − λKT pk),

which requires a proximal step to update the primal variable, like PDHG.
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ADMM

Let us consider(
0

0

)
∈

(
∂G KT

−K ∂F ∗

)(
uk+1

pK+1

)
+

(
1
λI −KT

−K λKKT

)
︸ ︷︷ ︸

=:M

(
uk+1 − uk

pK+1 − pk

)
.

If we decompose this equation component by component, in p we have

0 ∈ ∂F ∗(pk+1) + λKKT (pk+1 − pk)−K(2uk+1 − uk)

pk+1 = argmin
p

F ∗(p) +
λ

2

∥∥∥∥KT p−KT pk − 1

λ
K(2uk+1 − uk)

∥∥∥∥2

,

and we need a special structure of K or F ∗ to solve this subproblem

because. In general, the subproblem is more difficult than the proximal

step of PDHG.
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Example: Graph projection splitting

For any generic problem of our usual form,

min
u
H(u) +R(Du)

we can write

min
u,v,d

H(v) +R(d), s.t.

(
I −I 0

D 0 −I

)
︸ ︷︷ ︸

K

uv
d


︸ ︷︷ ︸
x

= 0

min
x=(u,v,d)

H(v) +R(d) + F (Kx) F (z) =

0 if z = 0

∞ otherwise

min
x=(u,v,d)

max
p

H(v) +R(d) + 〈Kx, p〉

where F ∗ = supz 〈z, p〉 − F (z) = 〈0, p〉 − F (0) = 0 and the solution of

the ADMM subproblem in p becomes a linear system.
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Remarks on ADMM

ADMM is often derived from a different perspective. In this perspective,

the above ADMM is the classical algorithm applied to the dual

formulation of the problem. The primal version is(
0

0

)
∈

(
∂G KT

−K ∂F ∗

)(
uk+1

pK+1

)
+

(
λKTK KT

K 1
λI

)
︸ ︷︷ ︸

=:M

(
uk+1 − uk

pK+1 − pk

)
.

and requires G to be sufficiently simple in order to solve the update

equations, i.e.

pk+1 = proxλF∗(p
k + λKuk)

uk+1 = arg min
u

λ

2

∥∥∥∥Ku−Kuk +
1

λ
(2pk+1 − pk)

∥∥∥∥2

+G(u)
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Some final remarks

Detailed convergence rate of ADMM is still an active field of research.

Whether or not ADMM is faster than PDHG and its variants largely

depends on how efficient the non-prox step can be computed.

It often even depends on the architecture you are computing on.

Tendency:

PDHG is better parallelizable → GPU

ADMM makes more progress per iteration → CPU
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Stopping customized proximal point algorithms

We find a point (û, p̂) that satisfies the optimality conditions(
0

0

)
∈

(
∂G KT

−K ∂F ∗

)(
û

p̂

)
of the saddle point problem

min
u

max
p

G(u) + 〈Ku, p〉 − F ∗(p)

by the customized proximal point algorithm

0 ∈

[
∂G KT

−K ∂F ∗

][
uk+1

pk+1

]
+

M�0︷ ︸︸ ︷[
M1 −KT

−K M2

][
uk+1 − uk

pk+1 − pk

]
Natural considerations:

How close is −KT pk+1 to being an element of ∂G(uk+1)?

How close is Kuk+1 to being an element of ∂F ∗(pk+1)?

How close is (uk+1, pk+1) to (uk, pk) with distance induced by M?
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Primal and dual residuals

Based on the primal and dual residuals:

rk+1
p = M2(pk+1 − pk)−K(uk+1 − uk)

rk+1
d = M1(uk+1 − uk)−KT (pk+1 − pk)

we consider our algorithm to be convergent if ‖rk+1
d ‖2 + ‖rk+1

p ‖2 → 0,

because this implies

dist(−KT pk+1, ∂G(uk+1))→ 0, dist(Kuk+1, ∂F ∗(pk+1))→ 0.

This does not imply convergence of uk and pk by itself, but as we know

that PDHG and ADMM do converge, then ‖rk+1
d ‖ and ‖rk+1

p ‖ are good

measures for convergence.
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Upper bounds on the residuals

How should we use ‖rk+1
d ‖ and ‖rk+1

p ‖ to formalize a stopping criterion?

Simple option: Iterator until ‖rk+1
d ‖ ≤ ε and ‖rk+1

p ‖ ≤ ε.

Could be unfair, if uk ∈ Rn and pk ∈ Rm and e.g. n >> m.

Use ‖rk+1
d ‖ ≤

√
n ε and ‖rk+1

p ‖ ≤
√
m ε.

Could be unfair for different scales! Introduce absolute and relative

error criteria:

‖rk+1
d ‖ ≤

√
n εabs + dual scale factor · εrel

‖rk+1
p ‖ ≤

√
m εabs + primal scale factor · εrel

But what are reasonable scale factors?
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Scaling the primal residuum

0 ∈

[
∂G KT

−K ∂F ∗

][
uk+1

pk+1

]
+

[
M1 −KT

−K M2

][
uk+1 − uk

pk+1 − pk

]
The primal residual

rk+1
p = M2(pk+1 − pk)−K(uk+1 − uk)

measures how far Kuk+1 is away from a particular element in ∂F ∗(pk+1),

and therefore scales with the magnitude of elements in ∂F ∗(pk+1).

0 ∈ ∂F ∗(pk+1)−Kuk+1 + rk+1
p

⇒0 ∈ ∂F ∗(pk+1)−KT (2uk+1 − uk) +M2(pk+1 − pk).

⇒ M2(pk − pk+1) +KT (2uk+1 − uk)︸ ︷︷ ︸
=:zk+1

∈ ∂F ∗(pk+1)

Thus, ‖rk+1
p ‖ ≤

√
m εabs + ‖zk+1‖ · εrel is scale-independent.
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Scaling the dual residuum

Similarly, the dual residual

rk+1
d = M1(uk+1 − uk)−KT (pk+1 − pk)

measures how far −KT pk+1 is away from a particular element in

∂G(uk+1), and scales with the magnitude of elements in ∂G(uk+1).

0 ∈ ∂G(uk+1) +KT pk+1 + rk+1
d .

⇒ 0 ∈ ∂G(uk+1) +KT pk +M1(uk+1 − uk)

⇒ M1(uk − uk+1)−KT pk︸ ︷︷ ︸
=:vk+1

∈ ∂G(uk+1)

Thus, ‖rk+1
d ‖ ≤

√
n εabs + ‖vk+1‖ · εrel is scale-independent.
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A scaled absolute and relative stopping criterion

In summary, a good stopping criterion is

‖rk+1
p ‖ ≤

√
m εabs + ‖zk+1‖ · εrel,

‖rk+1
d ‖ ≤

√
n εabs + ‖vk+1‖ · εrel.

Interesting observation in our previous considerations:

ADMM/PDHG actually generates iterates (uk+1, pk+1, vk+1, zk+1) with

vk+1 ∈ ∂G(uk+1), zk+1 ∈ ∂F ∗(pk+1).

The goal of all algorithms is to achieve convergence

‖ zk+1 −Kuk+1︸ ︷︷ ︸
=rk+1

p

‖ → 0 and ‖ vk+1 +KT pk+1︸ ︷︷ ︸
=rk+1

d

‖ → 0!
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Adaptive stepsizes

rk+1
p and rk+1

d determine the convergence of the algorithm.

Can we also use rd and rp to accelerate the algorithm?

Adaptive stepsizes:

0 ∈

[
∂G KT

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
τk
M1 −KT

−K 1
σk
M2

][
uk+1 − uk

pk+1 − pk

]

Base the choices of τk and σk on the residuals rkp and rkd , where

rk+1
p =

1

σk
M2(pk+1 − pk)−K(uk+1 − uk),

rk+1
d =

1

τk
M1(uk+1 − uk)−KT (pk+1 − pk)?
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Customized proximal point algorithms

Decreasing residual balancing: Let (M1,−KT ;−K,M2) be positive

definite. Pick τ0 and σ0 with τ0σ0 < 1. Further choose µ > 1, α0 < 1,

β < 1 and adapt as follows

If ‖rkp‖ > µ‖rkd‖, do

τk+1 = (1− αk)τk, σk+1 =
1

1− αk
σk, αk+1 = αk · β.

If ‖rkd‖ > µ‖rkp‖, do

τk+1 =
1

1− αk
τk, σk+1 = (1− αk)σk, αk+1 = αk · β.

Keep τk+1 = τk, σk+1 = σk, and αk+1 = αk otherwise.

Goldstein et al., Adaptive Primal-Dual Hybrid Gradient Methods for

Saddle-Point Problems: The resulting scheme still converges.
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Summary

For proper, closed, convex functions G and F ◦K (with

ri(dom(G)) ∩ ri(dom(F ◦K)) 6= ∅) we can write

min
u
G(u) + F (Ku) = min

u
max
p

G(u) + 〈Ku, p〉 − F ∗(p).

with the optimality condition

0 ∈

[
∂G KT

−K ∂F ∗

][
û

p̂

]
.

Typically, (û, p̂) cannot be computed directly, but iterative methods on

this saddle point problem that decouple the update inclusions in u and p.

They converge analyzed as fixed-point iterations of averaged operators.
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Saddle point methods

Most prominently, we discussed

PDHG, overrelaxation on primal

0 ∈

[
∂G KT

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
τ I −KT

−K 1
σ I

][
uk+1 − uk

pk+1 − pk

]
.

PDHG, overrelaxation on dual

0 ∈

[
∂G KT

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
τ I KT

K 1
σ I

][
uk+1 − uk

pk+1 − pk

]
.

Primal ADMM

0 ∈

[
∂G KT

−K ∂F ∗

][
uk+1

pk+1

]
+

[
λKTK KT

K 1
λI

][
uk+1 − uk

pk+1 − pk

]
.

Corresponding dual ADMM

0 ∈

[
∂G KT

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
λI −KT

−K λKKT

][
uk+1 − uk

pk+1 − pk

]
.
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Single view 3D reconstruction

Let Ω be the image domain, S ⊂ Ω an object.

From: Finding Nemo, https: // ohmy. disney. com/ movies/ 2015/ 12/ 20/ dory-finding-nemo-hero/

Goal: Estimate a 3D modelApplications 62
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First version: Single view 2.5D reconstruction

Oswald, Töppe, Cremers CVPR 2012: Find a height map that has

minimal surface for fixed volume and respects the contour.

Mathematically for height map u : S → R∫
S
u(x) dx = V , where V is a user given volume

Constrain u|∂S = 0

Minimize
∫
S

√
1 + |∇u(x)|2 dx (surface area)

Discrete form

min
u

∑
i

√
1 + |(Du)i|2 + δΣV (u),

for a suitable gradient operator D (respecting u|∂S = 0),

ΣV = {u ∈ R|S| |
∑
i

ui = V }.
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Single view 2.5D reconstruction

How can we minimize

E(u) =
∑
i

√
1 + |(Du)i|2 + δΣV (u) ?

One option: Gradient projection.

Descent on the term that does not have an easy prox:

uk+1/2 = uk − τD∗vk, vi,: =
(Duk)i,:√

1 + |(Duk)i,:|2

for suitable τ , with D : Rn → Rn×2.

Project onto constraint set:

projΣV (v) = argmin
u

1

2
‖u− v‖22 + δΣV (u)

How does the projection look like?
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Single view 2.5D reconstruction

argmin
u

1

2
‖u− v‖22 + δΣV (u) = argmin

u

1

2
‖u− v‖22 + δ·−V (〈1, u〉)

Optimality condition

0 = û− v + 1p, p ∈ ∂δ·−V (〈1, û〉)

Taking the inner product with 1 and recalling that
∑
i ûi = V :

0 =V −
∑
i

vi + np⇒ p =
1

n

(
V −

∑
i

vi

)
,

yields

û =v − 1
1

n

(
V −

∑
i

vi

)
= v −mean(v)1 + 1

V

n
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Single view 2.5D reconstruction

Oringinal image from: Finding Nemo, https: // ohmy. disney. com/ movies/ 2015/ 12/ 20/ dory-finding-nemo-hero/
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Single view 2.5D reconstruction

What about our primal-dual/splitting methods?

min
u

∑
i

√
1 + |(Du)i|2 + δΣV (u),

Natural reformulation:

min
u,d

∑
i

√
1 + |di|2 + δΣV (u), Du = d.

But is F (d) =
∑
i

√
1 + |di|2 simple?

Somewhat yes, as it reduces to a 1D problem.

Somewhat no, as there is no (easy) closed form solution.

Reformulation that makes the prox operator really easy?
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Single view 2.5D reconstruction

Let’s start with

min
u,d

∑
i

√
1 + |di|2 + δΣV (u), Du = d.

Note that √
1 + |di|2 =

∣∣(di, 1)T
∣∣

Idea: Introduce variable e with constraint ei = 1 for all i.

min
u,d,e

∑
i

√
e2
i + |di|2︸ ︷︷ ︸

=|(di,ei)T |︸ ︷︷ ︸
=‖(d,e)‖2,1

+δΣV (u), Du = d, e = 1
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Single view 2.5D reconstruction

min
u,d,e

‖(d, e)‖2,1 + δΣV (u), Du = d, e = 1

Now the proximity operators of the two functions are simple!

min
u,d,e

max
p,q
‖(d, e)‖2,1 + δΣV (u) +

〈(
p

q

)
,

(
−D I 0

0 0 I

)ud
e

〉− 〈q,1〉
Option 1: Use PDHG

→ Board
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Single view 2.5D reconstruction
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Single view 2.5D reconstruction
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Single view 2.5D reconstruction
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Single view 2.5D reconstruction

Applications 73


	PDHG
	Applications of PDHG
	Modifications

	ADMM
	Stopping Criteria
	Adaptive stepsizes
	Applications

