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Recall: DUALITY

Theorem (Fenchel’s Duality)
Let G :R™ - RU{oo} and F : R™ — RU {oo} be proper, closed,
convex functions and u € ri(dom(G)) such that Ku € ri(dom(F')). Then

infy, G(u) + F(Ku) "Primal”
= infysup, G(u)+(g,Ku) — F*(q) "Saddle point”

= supginfu  G(u) + (g, Ku) — F*(q)  "Saddle point”

= sup, —G*(—K*q) — F*(q) "Dual”

We used the dual formulation to solve problems of the form
min,, ||u— f|l2 + «||Du||; that we could not directly because the

proximal operator of || Dul|; is not simple.
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Motivation

But we still do not have a method to solve problems of the form
min - [lu — fl[y +af[Dully

although the proximal mapping of the £'-norm is easy to compute.

Can we build an algorithm around

min max G(u) + (p, Ku) — F*(p)?

u p

Proximal mapping as implicit gradient descent

For differentiable F, the proximal mapping does an implicit gradient step

uF Tt = prox, g (u¥) = W = uF — TV E (W)
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The primal-dual hybrid gradient algorithm

Let us define
PD(u,p) := G(u) + (p, Ku) — F*(p)
and try to alternate implicit ascent steps in p with implicit descent steps

in u:

Pt = Prox_aPD(uk,~)(pk)

’U,k+1 = pI’OXTPD(_7pk+1)(Uk)
One finds

pk+1 :prOX—UPD(uk,-)(pk)7
1 .
~ argmin ¥ [p | + 0 F"(p) — o (K0, p)
p
1
~argmin L | — oK |? + ()
p

PDHG =prox, g (p" 4+ o Ku¥)



The primal-dual hybrid gradient algorithm

Let us define
PD(u,p) := G(u) + (p, Ku) — F*(p)

and try to alternate implicit accent steps in p with implicit descent steps

in u:
PP = prox, g (pF + o Ku®)
uf = prOXTPD(v,karl)(uk)
One finds
uktt ZPVOXTPD(-,le)(Uk)»

1

= argmin §||u —uF|? + 7G(u) + T(Ku, pF )
1

= argmin §||u —uf + 7K pR Y2+ 7G ()

=prox, o (u® — TK*p*th)
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Primal-dual hybrid gradient method

We found
PPt = prox, p. (pF + o Ku®),

k+1

uF ! = prox o (uf — TK*pktl).

One should make one (currently non intuitive) modification:
Definition (PDHG)

We will call the iteration

PP = prox, p. (p¥ + o K",
uf = prox g (uf — TKpY), (PDHG)
Tt = 2uh Tt — ok,

the Primal-Dual Hybrid Gradient Method. As we will see, it converges
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References for PDHG

PDHG is commonly referred to as the Chambolle and Pock algorithm.

Nevertheless, several authors contributed to its development.

Here is a (likely incomplete) list of relevant papers:
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Pock, Cremers, Bischof, Chambolle, A convex relaxation approach
for computing minimal partitions.

Esser, Zhang, Chan, A General Framework for a Class of First Order
Primal-Dual Algorithms for Convex Optimization in Imaging Science.
Chambolle, Pock, A first-order primal-dual algorithm for convex
problems with applications to imaging.

Zhang, Burger Osher, A unified primal-dual algorithm framework

based on Bregman iteration.



Understanding PDHG

Why does PDHG work?

1. Sanity check: If the algorithm converges, it does so to a minimizer.

2. Why does PDHG converge? Computation on the board for

o)<

k+1

w1 = prox_g(uf — TK*p¥)

R = okl _ b

Pt = prox, . (P + o Ka ).

oG KT uktl I KT\ [oFt?
—K OF*) \pkt! + -K ir phtl
— ——— N— ———

=T =M

for the set-valued operator T': R™ x R" — P(R") x P(R")

PDHG
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Fixed point iteration

We have reformulated the update rule to
0 € TZF 4 M(ZFF1 - 2F)

for a set-valued operator T" and a matrix M. Let us define the process of
computing the next iterate as the resolvent

= (M +T)~H(M25). (CPPA)
We already know an iteration of this form, the proximal point algorithm
u* = prozp(u®) = (I + 70E) ! (ub)

So we can use the same tools to analyze its convergence. We will call it a
customized proximal point algorithm (CPPA).
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Convergence of the CPPA

Remember what we did for the proximal gradient algorithm?

— Show that prozg = (I + 7OE)~! is firmly nonexpansive, i.e.
averaged with o = 1/2.

We will do something similar by generalizing the crucial inequality
<Pu—PmU—U>20 Vu,v,pueaE(U)mve@E(v)

Definition (Monotone Operator)

A set valued operator T is called monotone if the inequality
<pu _pvau_v> >0

holds for all u, v, p, € T'(u) and p, € T'(v).

PDHG
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Convergence of the CPPA

This has the potential to show convergence of
0€ T(H) 4+ 2 =25, (PPA)

provided that the above iteration is well-defined, i.e. the resolvent

(I +T)~Y(z) is defined for any z € R™. This is a technical issue which
can be resolved by considering maximal monotone operators. In our
convex settings, this is not an issue.

Definition

The relation T is maximal monotone if there is no monotone operator
that properly contains it as a subset of R"™ x R™.

In other words, if the monotone operator T' is not maximal, then there is

(x,u) ¢ T such that T U {(x,u)} is monotone.
PDHG
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Examples of maximal monotone operators

Lemma
E:R" = R, then OF is a monotone operator. If E is closed convex and

proper then OF is maximal monotone.

Lemma
A continuous monotone function F: R™ — R with dom(F) = R" is

maximal.

Lemma
If T is maximal monotone, then the resolvent Ry = (I + aT)~! with

« > 0 and the Caley operator Cr = 2R — I are nonexpansive functions.

PDHG
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Theorem (Convergence of Generalized Proximal Point
Algorithm)

Let T be a maximal monotone operator, and let there exist a z such that
0 € T(z). Then the (generalized) proximal point algorithm

= (T + )71 (2F)
0€ T(2MHh) 4 2L P (2)

converges to a point Z with 0 € T'(Z).

Proof.

If T is maximal monotone, the resolvent Ry = (T + I)~! and the Caley
operator Cr = 2Ry — I are nonexpansize. Since Ry = %I + %CT, the
resolvent Rp is an averaged operator and the generalized proximal point
algorithm is a fixed-point iteration of an averaged operator that

converges by Krasnoselskii-Mann Theorem. O

PDHG
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Convergence of the CPPA

But we wrote the PDHG algorithm as
0 € T(F) + MFH — M2*, (3)

i.e. with an additional matrix M.
Idea: For symmetric positive definite matrices, write M = LT L and
rewrite (CPPA) as

0e L "TL™(¢FY) + ¢* = ¢, (CPPA)
with Ck = Lz*, and
LTTL™N(¢) ={qeR" |q=L""p, pe T(LT'Q}
Lemma
If T is monotone, then L~TTL~' is monotone, too.

Proof: Exercise.
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Convergence conclusions CPPA

Theorem (Convergence CPPA)

Let T' be a maximally monotone operator. Let there exist a z such that
0 € T(z), and let the matrix M be symmetric positive definite. Then the
customized proximal point algorithm

A= (M +T)" N (M2F)

converges to a zZ with 0 € T(z).
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Convergence conclusions PDHG

As the primal-dual hybrid gradient method can be rewritten (after an
index shift) as

0 0G KT uktl iy KT ubtl — yk
S + | 7
0 —-K 9F*) \ptt? ~K 15 pEHL b
—_——— —_——
=T =M
Theorem

Convergence PDHG The operator T' is maximally monotone. For
TO < W the matrix M in the PDHG algorithm is positive definite.
Hence, PDHG converges.

(Assuming F and G to be proper, closed, and convex, assuming there is a u € ri(G)
such that Ku € ri(F'), and assuming the existence of a minimizer).

PDHG
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ROF Denoising

1
min P(u) = min o Ju— I + ol Kulz,

with K being a discretization of the multichannel gradient operator.
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ROF Denoising
We write

u

The (PDHG) updates are

P = prox, . (0 + o Ktt)

k+1

U = proxTG(uk — T.K'*pk"’l)7

K+l _ gy k+1 _ K

U
which in this case amounts to

k+1
p

u

T pFtl f 7 f
1+7

PDHG akJrl _ 2uk+1 _ uk'

. . 1
min P(u) = m1nmax§||u — fIP 4 (Ku,p) — ¢ <
u P T

a(p)-

1 _
argmin < [lp — (" + o Ka")|* + ov) .. <a(0),
p

1
wH argmm*llu—(u — K M2 + *Ilu—fIIQ
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TV-L! Denoising

min P(u) = muin lu— flli + of Kul|2,1

with K being a discretization of the multichannel gradient operator.
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TV-L! Denoising

We write

. . 1
min P(u) = mulnmgxiﬂu = fll 4+ (Ku, p) = )0 c<a(D)-

u

The (PDHG) updates are

phtl = proon*(pk + JKﬂk)

uF Tt = prox, o (u” — TK*p*TY),

At = 2uf o,

which in this case amounts to

An exercise! :-)

PDHG
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TV-Inpainting

min P(u) = miney,, (v) + of Kull21
u
with K being a discretization of the color gradient operator, and

() 0 lful:f, foralliel,
L = )
fu 0o otherwise.

PDHG
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TV-Inpainting

We write

min P(u) = muinmgx Lf“(u) + (Ku,p) — LH.szwga(p).

u

The (PDHG) updates are

P = proxp. (pF + o Ku)

uF = prox, o (uf — T K*pF L),

u{c+1{fi ifiel,

=
! (uk — 7K p*+L);  otherwise.

aF = 2kt P
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TV-Deblurring

1
min P(u) = min 5 || Au — FIP + ol Kull2,1

with K being a discretization of the multichannel gradient operator, A

being a convolution with a blur kernel.
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TV-Deblurring - Option 1

We write

1
min P(u) = rrhinm;ix §HAu — f||2 + (Ku,p) — Ul 0o <a(P)-

u

The (PDHG) updates are

P = prox, . (0 + o Kitt)

k+1

U = proxTG(u”C — TK*pk"’l)7

GFL = okt _ k.
which in this case amounts to

k+1
p

1 i
argmin  [[p - (0" + o KuP)|? + ov . <a(P),
p

o1 N T
uFt = argmin §||u — (uk — 7K p’”‘l)H2 + §||AU - f”2
u

= (I +7A%A)(u* — 7K*p" + 1f)

At = 2t ok
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TV-Deblurring - Option 2

We write

min P(u)

u

. 1
=minmax(Au — f,q) = 3lla|* + (Ku, p) = ¢, <a(p)

A 1
= min max < <K> u, <Z>> —(f,q) — QIIQII2 = 2,00 <a(P)

Now we have

F*(0,0) = {,0) + g all* + 11y o a(p)
G(u) =0
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TV-Deblurring - Option 2

The (PDHG) updates are

1 _ o
¢"t1 = argmin §||q — (" + AT ||> + o (f, q) + §||Q||2,
a

.1 _
p" = argmin §IIP — (" + oK@")|? + ou. . <a(P),
P

uk+1 —_ uk o TK*karl o TA*qk+1

@ = 2R ok
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TV-Zooming

1
min P(u) = min EHAU — fIP + al|Kull2,

with K being a discretization of the multichannel gradient operator,
A = DB, with B being a convolution with a blur kernel, and D being a

downsampling, e.g. a matrix

PDHG implementation: Option 2 from the previous example.
PDHG
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TV-Zooming

Input data

Nearest neighbor TV Zooming
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Image Segmentation

min P(u) = minea(u) + e20(u) + (u, f) + af|[Kull2,1

where K : RnXmxc _y Rnmex2 heing 3 discretization of the multichannel

gradient operator, and

A :{ 0 if S, uign =1, V(i,j)

oo else.

0 fuik>0, Y34k
t>o0(u) :{ oo else ’ | )

PDHG
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Segmentation

5 100 150 200 250 300 350 400

Upper row: data term minimization (=kmeans assignment), lower row:

variational method
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Image Segmentation

Option 1: We solve
minmax ¢a (1) 4 t>0(w) + (u, f) + (Ku, p) — ¢, <a(p)-

u p

— Primal proximal operator: Projection onto unit simplex.

Option 2: We solve

min max(Su — 1, q) + t>o(u) + (u, f) + (Ku, p) — |||y . <a(D)-

U pgq
where (Su);; = >, ui ;.

— Very simple proximal operators, but additional variable.

PDHG
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Final remark for applications
If you are too lazy to compute the proximity operator of F™*
P = prox, g ()
= argmin S lp 2| + 0" (p)
=0=p—z+ou, u€c€IF(p
:>O:ﬁ—z/a+§]57 p € OF(u)
= @ = prox1p(2/0)
>p=z—0 prox%F(z/a)

Lemma (Moreau's identity)

If you know proxp you also know proxp.,

prox, g« (2) = z — o prox1 g (z/0).

PDHG
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Convergence rate

We have seen: PDHG works very well on problems of the form
min G(u) + F(Ku),
for which F' and G are simple.

We get a convergence rate of

min ||(I+L7TTL71)(€]€) _ kaz < C”€O 50”
J€{0,....k} - k+1

for ¢ = L(u*,p"), L being the matrix square-root of M, and C being a
constant.

What if our problem is more friendly? E.g. what if G or F' or both are
strongly convex?
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Either G or F™* is strongly convex

PP = prox,, p. (0 + oK),
ubtl = prokaG(uk — T K ph Ty,
0, — 1
SN

Tht1 = 6Tk, Okt1 = 0k/0k

ak+1 — uk-‘rl + ek(uk-‘rl _ ’U,k).

for 7o < ||K||?, and G being ~y-strongly convex.

Theorem

(PDHG2)

For strongly convex G and € > 0, there exists an Ny such that for any

N > N().'

PDHG

|

—uM|? <

1+e (|a—u°?
A2N2

S -1 )
0
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Discussion of the convergence orders

If part of the energy is L smooth, the gradient methods obtain linear
convergence on strongly convex energies.

As L-smoothness of the primal corresponds to 1/L-strong convexity of
the convex conjugate. It is natural to ask: what can we do if we
additionally assume F' to be L-smooth, i.e., assume F'* to be strongly

convex?
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Two strongly convex functions

Consider

p*t = prox, p. (pF + o Kab),

ML = prox, o (uf — TK*phth), (PDHG3)

ﬂk+1 _ uk+1 + e(uk+1 _ uk)'

u

Theorem ( Linear convergence of strongly convex functions )

For p <273/ K|, 7= p/(2v), o = 1/(20), 0 € [1/(1 + ), 1], G
being ~y-strongly convex and F* being d-strongly convex, there exists
w < 1, such that the iterates of (PDHG3) meet

™ =@l + (1 = w)dllp™ = plI* < w™(lu’ —al +olp° - 5).

PDHG
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Generic form

Remember the optimality conditions of the saddle point formulation

minmax G(u) + (Ku,p) — F*(p)

u p

o) (% 52 )

We could not compute (i, p) directly. Therefore,

0 c 0G KT uktl N M, Mg\ [uFtl —oF
0 K OF* pK+1 M4 ]\42 pK+1 _ pk
N————’

=M

were

such that
M is symmetric, i.e. M3 = (My)T,
sequential updates are possible, i.e. M3 =—K7, or M, = K.

Generalizations
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Diagonal M, and M,

Sticking to M3 = —K7 leads to

0 . 0G KT s N M, KT\ [uFtt —uF
0 K OF* pK+l - K M, pK+1 _pk :
—_————

Only remaining requirement: M should be positive definite!

In PDHG we chose M; = %I, My = %I for simplicity.

In many cases, e.g., for separable F'* and G, the updates remain easy to
compute if M; and M, are diagonal.

Theorem

Let a € [0,2], My = diag(m}) and My = diag(m7) with

mjl > Z |Ki,j|27a, mf > Z |Ki7j|a.
i J

Then M s positive definite.
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Some remarks

Regarding the choice of M7 and Mos:
It does not influence the convergence rate.

It is an active field of research to understand its influence on

constants in the convergence rates.

It can make a huge difference in practice!!

Typically, the practical convergence speed improves the more
information about K is included in My, M.

The latter motivates yet a different and vastly popular algorithm, the
alternating direction method of multipliers (ADMM).
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