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Recall: DUALITY

Theorem (Fenchel’s Duality)

Let G : Rn → R ∪ {∞} and F : Rm → R ∪ {∞} be proper, closed,

convex functions and u ∈ ri(dom(G)) such that Ku ∈ ri(dom(F )). Then

infu G(u) + F (Ku) ”Primal”

= infu supq G(u) + 〈q,Ku〉 − F ∗(q) ”Saddle point”

= supq infu G(u) + 〈q,Ku〉 − F ∗(q) ”Saddle point”

= supq −G∗(−K∗q)− F ∗(q) ”Dual”

We used the dual formulation to solve problems of the form

minu ‖u− f‖2 + α‖Du‖1 that we could not directly because the

proximal operator of ‖Du‖1 is not simple.
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Motivation

But we still do not have a method to solve problems of the form

min
u
‖u− f‖1 + α‖Du‖1

although the proximal mapping of the `1-norm is easy to compute.

Can we build an algorithm around

min
u

max
p

G(u) + 〈p,Ku〉 − F ∗(p)?

Proximal mapping as implicit gradient descent

For differentiable E, the proximal mapping does an implicit gradient step

uk+1 = proxτE(uk) ⇒ uk+1 = uk − τ∇E(uk+1)
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The primal-dual hybrid gradient algorithm

Let us define

PD(u, p) := G(u) + 〈p,Ku〉 − F ∗(p)

and try to alternate implicit ascent steps in p with implicit descent steps

in u:

pk+1 = prox−σPD(uk,·)(p
k)

uk+1 = proxτPD(·,pk+1)(u
k)

One finds

pk+1 =prox−σPD(uk,·)(p
k),

= argmin
p

1

2
‖p− pk‖2 + σF ∗(p)− σ〈Kuk, p〉

= argmin
p

1

2
‖p− pk − σKuk‖2 + σF ∗(p)

=proxσF∗(p
k + σKuk)PDHG 4



The primal-dual hybrid gradient algorithm

Let us define

PD(u, p) := G(u) + 〈p,Ku〉 − F ∗(p)

and try to alternate implicit accent steps in p with implicit descent steps

in u:

pk+1 = proxσF∗(p
k + σKuk)

uk+1 = proxτPD(·,pk+1)(u
k)

One finds

uk+1 =proxτPD(·,pk+1)(u
k),

= argmin
u

1

2
‖u− uk‖2 + τG(u) + τ〈Ku, pk+1〉

= argmin
u

1

2
‖u− uk + τK∗pk+1‖2 + τG(u)

=proxτG(uk − τK∗pk+1)
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Primal-dual hybrid gradient method

We found

pk+1 = proxσF∗(p
k + σKuk),

uk+1 = proxτG(uk − τK∗pk+1).

One should make one (currently non intuitive) modification:

Definition (PDHG)

We will call the iteration

pk+1 = proxσF∗(p
k + σKūk),

uk+1 = proxτG(uk − τK∗pk+1),

ūk+1 = 2uk+1 − uk.

(PDHG)

the Primal-Dual Hybrid Gradient Method. As we will see, it converges

if τσ < 1
‖K‖2 .

PDHG 6



References for PDHG

PDHG is commonly referred to as the Chambolle and Pock algorithm.

Nevertheless, several authors contributed to its development.

Here is a (likely incomplete) list of relevant papers:

Pock, Cremers, Bischof, Chambolle, A convex relaxation approach

for computing minimal partitions.

Esser, Zhang, Chan, A General Framework for a Class of First Order

Primal-Dual Algorithms for Convex Optimization in Imaging Science.

Chambolle, Pock, A first-order primal-dual algorithm for convex

problems with applications to imaging.

Zhang, Burger Osher, A unified primal-dual algorithm framework

based on Bregman iteration.
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Understanding PDHG

Why does PDHG work?

1. Sanity check: If the algorithm converges, it does so to a minimizer.

2. Why does PDHG converge? Computation on the board for

uk+1 = proxτG(uk − τK∗pk)

ūk+1 = 2uk+1 − uk

pk+1 = proxσF∗(p
k + σKūk+1). (1)

(
0

0

)
∈

(
∂G KT

−K ∂F ∗

)
︸ ︷︷ ︸

=:T

(
uk+1

pk+1

)
+

(
1
τ I −KT

−K 1
σ I

)
︸ ︷︷ ︸

=:M

(
uk+1 − uk

pk+1 − pk

)

for the set-valued operator T : Rn × Rn → P(Rn)× P(Rn)

PDHG 8



Fixed point iteration

We have reformulated the update rule to

0 ∈ Tzk+1 +M(zk+1 − zk)

for a set-valued operator T and a matrix M . Let us define the process of

computing the next iterate as the resolvent

zk+1 = (M + T )−1(Mzk). (CPPA)

We already know an iteration of this form, the proximal point algorithm

uk+1 = proxE(uk) = (I + τ∂E)−1(uk)

So we can use the same tools to analyze its convergence. We will call it a

customized proximal point algorithm (CPPA).
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Convergence of the CPPA

Remember what we did for the proximal gradient algorithm?

→ Show that proxE = (I + τ∂E)−1 is firmly nonexpansive, i.e.

averaged with α = 1/2.

We will do something similar by generalizing the crucial inequality

〈pu − pv, u− v〉 ≥ 0 ∀u, v, pu ∈ ∂E(u), pv ∈ ∂E(v)

Definition (Monotone Operator)

A set valued operator T is called monotone if the inequality

〈pu − pv, u− v〉 ≥ 0

holds for all u, v, pu ∈ T (u) and pv ∈ T (v).
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Convergence of the CPPA

This has the potential to show convergence of

0 ∈ T (zk+1) + zk+1 − zk, (PPA)

provided that the above iteration is well-defined, i.e. the resolvent

(I + T )−1(z) is defined for any z ∈ Rn. This is a technical issue which

can be resolved by considering maximal monotone operators. In our

convex settings, this is not an issue.

Definition
The relation T is maximal monotone if there is no monotone operator

that properly contains it as a subset of Rn × Rn.

In other words, if the monotone operator T is not maximal, then there is

(x, u) /∈ T such that T ∪ {(x, u)} is monotone.
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Examples of maximal monotone operators

Lemma
E : Rn → R̄, then ∂E is a monotone operator. If E is closed convex and

proper then ∂E is maximal monotone.

Lemma
A continuous monotone function F : Rn → R with dom(F ) = Rn is

maximal.

Lemma
If T is maximal monotone, then the resolvent RT = (I + αT )−1 with

α > 0 and the Caley operator CT = 2RT − I are nonexpansive functions.
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Theorem (Convergence of Generalized Proximal Point

Algorithm)

Let T be a maximal monotone operator, and let there exist a z such that

0 ∈ T (z). Then the (generalized) proximal point algorithm

zk+1 = (T + I)−1(zk)

0 ∈ T (zk+1) + zk+1 − zk (2)

converges to a point z̃ with 0 ∈ T (z̃).

Proof.
If T is maximal monotone, the resolvent RT = (T + I)−1 and the Caley

operator CT = 2RT − I are nonexpansize. Since RT = 1
2I + 1

2CT , the

resolvent RT is an averaged operator and the generalized proximal point

algorithm is a fixed-point iteration of an averaged operator that

converges by Krasnoselskii-Mann Theorem.
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Convergence of the CPPA

But we wrote the PDHG algorithm as

0 ∈ T (zk+1) +Mzk+1 −Mzk, (3)

i.e. with an additional matrix M .

Idea: For symmetric positive definite matrices, write M = LTL and

rewrite (CPPA) as

0 ∈ L−TTL−1(ζk+1) + ζk+1 − ζk, (CPPA)

with ζk = Lzk, and

L−TTL−1(ζ) = {q ∈ Rn | q = L−T p, p ∈ T (L−1ζ)}.

Lemma
If T is monotone, then L−TTL−1 is monotone, too.

Proof: Exercise.
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Convergence conclusions CPPA

Theorem (Convergence CPPA)

Let T be a maximally monotone operator. Let there exist a z such that

0 ∈ T (z), and let the matrix M be symmetric positive definite. Then the

customized proximal point algorithm

zk+1 = (M + T )−1(Mzk)

converges to a ẑ with 0 ∈ T (z).
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Convergence conclusions PDHG

As the primal-dual hybrid gradient method can be rewritten (after an

index shift) as(
0

0

)
∈

(
∂G KT

−K ∂F ∗

)
︸ ︷︷ ︸

=:T

(
uk+1

pk+1

)
+

(
1
τ I −KT

−K 1
σ I

)
︸ ︷︷ ︸

=:M

(
uk+1 − uk

pk+1 − pk

)
.

Theorem
Convergence PDHG The operator T is maximally monotone. For

τσ < 1
‖K‖2 the matrix M in the PDHG algorithm is positive definite.

Hence, PDHG converges.
(Assuming F and G to be proper, closed, and convex, assuming there is a u ∈ ri(G)

such that Ku ∈ ri(F ), and assuming the existence of a minimizer).

PDHG 16



ROF Denoising

minP (u) = min
u

1

2
‖u− f‖2 + α‖Ku‖2,1

with K being a discretization of the multichannel gradient operator.
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ROF Denoising

We write

min
u
P (u) = min

u
max
p

1

2
‖u− f‖2 + 〈Ku, p〉 − ι‖·‖2,∞≤α(p).

The (PDHG) updates are

pk+1 = proxσF∗(p
k + σKūk)

uk+1 = proxτG(uk − τK∗pk+1),

ūk+1 = 2uk+1 − uk.

which in this case amounts to

pk+1 = argmin
p

1

2
‖p− (pk + σKūk)‖2 + σι‖·‖2,∞≤α(p),

uk+1 = argmin
u

1

2
‖u− (uk − τK∗pk+1)‖2 +

τ

2
‖u− f‖2

=
uk − τK∗pk+1 + τf

1 + τ

ūk+1 = 2uk+1 − uk.PDHG 18



TV-L1 Denoising

minP (u) = min
u
‖u− f‖1 + α‖Ku‖2,1

with K being a discretization of the multichannel gradient operator.
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TV-L1 Denoising

We write

min
u
P (u) = min

u
max
p

1

2
‖u− f‖1 + 〈Ku, p〉 − ι‖·‖2,∞≤α(p).

The (PDHG) updates are

pk+1 = proxσF∗(p
k + σKūk)

uk+1 = proxτG(uk − τK∗pk+1),

ūk+1 = 2uk+1 − uk.

which in this case amounts to

An exercise! :-)
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TV-Inpainting

minP (u) = min
u
ιf|I (u) + α‖Ku‖2,1

with K being a discretization of the color gradient operator, and

ιf|I (u) =

{
0 if ui = fi for all i ∈ I,
∞ otherwise.

.
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TV-Inpainting

We write

min
u
P (u) = min

u
max
p

ιf|I (u) + 〈Ku, p〉 − ι‖·‖2,∞≤α(p).

The (PDHG) updates are

pk+1 = proxσF∗(p
k + σKūk)

uk+1 = proxτG(uk − τK∗pk+1),

⇒ uk+1
i =

{
fi if i ∈ I,
(uk − τK∗pk+1)i otherwise.

ūk+1 = 2uk+1 − uk.
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TV-Deblurring

minP (u) = min
u

1

2
‖Au− f‖2 + α‖Ku‖2,1

with K being a discretization of the multichannel gradient operator, A

being a convolution with a blur kernel.
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TV-Deblurring - Option 1

We write

min
u
P (u) = min

u
max
p

1

2
‖Au− f‖2 + 〈Ku, p〉 − ι‖·‖2,∞≤α(p).

The (PDHG) updates are

pk+1 = proxσF∗(p
k + σKūk)

uk+1 = proxτG(uk − τK∗pk+1),

ūk+1 = 2uk+1 − uk.

which in this case amounts to

pk+1 = argmin
p

1

2
‖p− (pk + σKūk)‖2 + σι‖·‖2,∞≤α(p),

uk+1 = argmin
u

1

2
‖u− (uk − τK∗pk+1)‖2 +

τ

2
‖Au− f‖2

= (I + τA∗A)−1(uk − τK∗pk+1 + τf)

ūk+1 = 2uk+1 − uk.
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TV-Deblurring - Option 2

We write

min
u
P (u)

= min
u

max
p,q
〈Au− f, q〉 − 1

2
‖q‖2 + 〈Ku, p〉 − ι‖·‖2,∞≤α(p)

= min
u

max
p,q

〈(
A

K

)
u,

(
q

p

)〉
− 〈f, q〉 − 1

2
‖q‖2 − ι‖·‖2,∞≤α(p)

Now we have

F ∗(p, q) = 〈f, q〉+
1

2
‖q‖2 + ι‖·‖2,∞≤α(p)

G(u) = 0

K̃ =

(
A

K

)
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TV-Deblurring - Option 2

The (PDHG) updates are

qk+1 = argmin
q

1

2
‖q − (qk + σAūk)‖2 + σ〈f, q〉+

σ

2
‖q‖2,

pk+1 = argmin
p

1

2
‖p− (pk + σKūk)‖2 + σι‖·‖2,∞≤α(p),

uk+1 = uk − τK∗pk+1 − τA∗qk+1

ūk+1 = 2uk+1 − uk.
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TV-Zooming

minP (u) = min
u

1

2
‖Au− f‖2 + α‖Ku‖2,1

with K being a discretization of the multichannel gradient operator,

A = DB, with B being a convolution with a blur kernel, and D being a

downsampling, e.g. a matrix

D =


1 0 0 0 0 ... ...

0 0 1 0 0 ... ...

0 0 0 0 1 ... ...

... ... ... ... ... ... ...

... ... ... ... ... ... ...


PDHG implementation: Option 2 from the previous example.
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TV-Zooming

Input data

Nearest neighbor TV Zooming
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Image Segmentation

minP (u) = min
u
ι∆(u) + ι≥0(u) + 〈u, f〉+ α‖Ku‖2,1

where K : Rn×m×c → Rnmc×2 being a discretization of the multichannel

gradient operator, and

ι∆(u) =

{
0 if

∑
k ui,j,k = 1, ∀(i, j)

∞ else.

ι≥0(u) =

{
0 if ui,j,k ≥ 0, ∀(i, j, k)

∞ else.
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Image Segmentation

Upper row: data term minimization (=kmeans assignment), lower row:

variational method
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Image Segmentation

Option 1: We solve

min
u

max
p

ι∆(u) + ι≥0(u) + 〈u, f〉+ 〈Ku, p〉 − ι‖·‖2,∞≤α(p).

→ Primal proximal operator: Projection onto unit simplex.

Option 2: We solve

min
u

max
p.q
〈Su− 1, q〉+ ι≥0(u) + 〈u, f〉+ 〈Ku, p〉 − ι‖·‖2,∞≤α(p).

where (Su)i,j =
∑
k ui,j .

→ Very simple proximal operators, but additional variable.
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Final remark for applications

If you are too lazy to compute the proximity operator of F ∗

p̃ = proxσF∗(z)

= arg min
p

1

2
‖p− z‖2 + σF ∗(p)

⇒ 0 = p̃− z + σũ, ũ ∈ ∂F ∗(p̃)

⇒ 0 = ũ− z/σ +
1

σ
p̃, p̃ ∈ ∂F (ũ)

⇒ ũ = prox 1
σF

(z/σ)

⇒ p̃ = z − σ prox 1
σF

(z/σ)

Lemma (Moreau’s identity)

If you know proxF you also know proxF∗ ,

proxσF∗(z) = z − σ prox 1
σF

(z/σ).
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Convergence rate

We have seen: PDHG works very well on problems of the form

minG(u) + F (Ku),

for which F and G are simple.

We get a convergence rate of

min
j∈{0,...,k}

‖(I + L−TTL−1)(ξk)− ξk‖2 ≤ C ‖ξ
0 − ξ0‖
k + 1

for ξk = L(uk, pk), L being the matrix square-root of M , and C being a

constant.

What if our problem is more friendly? E.g. what if G or F or both are

strongly convex?
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Either G or F ∗ is strongly convex

pk+1 = proxσkF∗(p
k + σkKū

k),

uk+1 = proxτkG(uk − τkK∗pk+1),

θk =
1√

1 + 2γτk
,

τk+1 = θkτk, σk+1 = σk/θk

ūk+1 = uk+1 + θk(uk+1 − uk).

(PDHG2)

for τ0σ0 ≤ ‖K‖2, and G being γ-strongly convex.

Theorem
For strongly convex G and ε > 0, there exists an N0 such that for any

N ≥ N0:

‖ũ− uN‖2 ≤ 1 + ε

γ2N2

(
‖ũ− u0‖2

τ2
0

+ ‖K‖2‖p̃− p0‖2
)
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Discussion of the convergence orders

If part of the energy is L smooth, the gradient methods obtain linear

convergence on strongly convex energies.

As L-smoothness of the primal corresponds to 1/L-strong convexity of

the convex conjugate. It is natural to ask: what can we do if we

additionally assume F to be L-smooth, i.e., assume F ∗ to be strongly

convex?
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Two strongly convex functions

Consider

pk+1 = proxσF∗(p
k + σKūk),

uk+1 = proxτG(uk − τK∗pk+1),

ūk+1 = uk+1 + θ(uk+1 − uk).

(PDHG3)

Theorem ( Linear convergence of strongly convex functions )

For µ ≤ 2
√
γδ/‖K‖, τ = µ/(2γ), σ = µ/(2δ), θ ∈ [1/(1 + µ), 1], G

being γ-strongly convex and F ∗ being δ-strongly convex, there exists

ω < 1, such that the iterates of (PDHG3) meet

γ‖uN − ũ‖2 + (1− ω)δ‖pN − p̃‖2 ≤ ωN (γ‖u0 − ũ‖2 + δ‖p0 − p̃‖2).
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Generic form

Remember the optimality conditions of the saddle point formulation

min
u

max
p

G(u) + 〈Ku, p〉 − F ∗(p)

were (
0

0

)
∈

(
∂G KT

−K ∂F ∗

)(
û

p̂

)
.

We could not compute (û, p̂) directly. Therefore,(
0

0

)
∈

(
∂G KT

−K ∂F ∗

)(
uk+1

pK+1

)
+

(
M1 M3

M4 M2

)
︸ ︷︷ ︸

=:M

(
uk+1 − uk

pK+1 − pk

)

such that

M is symmetric, i.e. M3 = (M4)T ,

sequential updates are possible, i.e. M3 = −KT , or M4 = K.
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Diagonal M1 and M2

Sticking to M3 = −KT leads to(
0

0

)
∈

(
∂G KT

−K ∂F ∗

)(
uk+1

pK+1

)
+

(
M1 −KT

−K M2

)
︸ ︷︷ ︸

=:M

(
uk+1 − uk

pK+1 − pk

)
.

Only remaining requirement: M should be positive definite!

In PDHG we chose M1 = 1
τ I, M2 = 1

σ I for simplicity.

In many cases, e.g., for separable F ∗ and G, the updates remain easy to

compute if M1 and M2 are diagonal.

Theorem
Let α ∈ [0, 2], M1 = diag(m1

j ) and M2 = diag(m2
i ) with

m1
j >

∑
i

|Ki,j |2−α, m2
i >

∑
j

|Ki,j |α.

Then M is positive definite.
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Some remarks

Regarding the choice of M1 and M2:

It does not influence the convergence rate.

It is an active field of research to understand its influence on

constants in the convergence rates.

It can make a huge difference in practice!!

Typically, the practical convergence speed improves the more

information about K is included in M1, M2.

The latter motivates yet a different and vastly popular algorithm, the

alternating direction method of multipliers (ADMM).
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