Primal-Dual Methods

V. Estellers

WS 2017

Recall: DUALITY

Theorem (Fenchel's Duality)

Let $G: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ and $F: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{\infty\}$ be proper, closed, convex functions and $u \in \operatorname{ri}(\operatorname{dom}(G))$ such that $K u \in r i(\operatorname{dom}(F))$. Then

$\inf _{u}$	$G(u)+F(K u)$	"Primal"
$=\inf _{u} \sup _{q}$	$G(u)+\langle q, K u\rangle-F^{*}(q)$	"Saddle point"
$=\sup _{q} \inf _{u}$	$G(u)+\langle q, K u\rangle-F^{*}(q)$	"Saddle point"
$=\sup _{q}$	$-G^{*}\left(-K^{*} q\right)-F^{*}(q)$	"Dual"

We used the dual formulation to solve problems of the form $\min _{u}\|u-f\|_{2}+\alpha\|D u\|_{1}$ that we could not directly because the proximal operator of $\|D u\|_{1}$ is not simple.

Motivation

But we still do not have a method to solve problems of the form

$$
\min _{u}\|u-f\|_{1}+\alpha\|D u\|_{1}
$$

although the proximal mapping of the ℓ^{1}-norm is easy to compute.
Can we build an algorithm around

$$
\min _{u} \max _{p} G(u)+\langle p, K u\rangle-F^{*}(p) ?
$$

Proximal mapping as implicit gradient descent

For differentiable E, the proximal mapping does an implicit gradient step

$$
u^{k+1}=\operatorname{prox}_{\tau E}\left(u^{k}\right) \quad \Rightarrow u^{k+1}=u^{k}-\tau \nabla E\left(u^{k+1}\right)
$$

The primal-dual hybrid gradient algorithm

Let us define

$$
\mathrm{PD}(u, p):=G(u)+\langle p, K u\rangle-F^{*}(p)
$$

and try to alternate implicit ascent steps in p with implicit descent steps in u :

$$
\begin{aligned}
& p^{k+1}=\operatorname{prox}_{-\sigma P D\left(u^{k}, \cdot\right)}\left(p^{k}\right) \\
& u^{k+1}=\operatorname{prox}_{\tau P D\left(\cdot, p^{k+1}\right)}\left(u^{k}\right)
\end{aligned}
$$

One finds

$$
\begin{aligned}
p^{k+1} & =\operatorname{prox}_{-\sigma P D\left(u^{k}, \cdot\right)}\left(p^{k}\right) \\
& =\underset{p}{\operatorname{argmin}} \frac{1}{2}\left\|p-p^{k}\right\|^{2}+\sigma F^{*}(p)-\sigma\left\langle K u^{k}, p\right\rangle \\
& =\underset{p}{\operatorname{argmin}} \frac{1}{2}\left\|p-p^{k}-\sigma K u^{k}\right\|^{2}+\sigma F^{*}(p) \\
& =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K u^{k}\right)
\end{aligned}
$$

The primal-dual hybrid gradient algorithm

Let us define

$$
\mathrm{PD}(u, p):=G(u)+\langle p, K u\rangle-F^{*}(p)
$$

and try to alternate implicit accent steps in p with implicit descent steps in u :

$$
\begin{aligned}
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K u^{k}\right) \\
u^{k+1} & =\operatorname{prox}_{\tau P D\left(\cdot, p^{k+1}\right)}\left(u^{k}\right)
\end{aligned}
$$

One finds

$$
\begin{aligned}
u^{k+1} & =\operatorname{prox}_{\tau P D\left(\cdot, p^{k+1}\right)}\left(u^{k}\right) \\
& =\underset{u}{\operatorname{argmin}} \frac{1}{2}\left\|u-u^{k}\right\|^{2}+\tau G(u)+\tau\left\langle K u, p^{k+1}\right\rangle \\
& =\underset{u}{\operatorname{argmin}} \frac{1}{2}\left\|u-u^{k}+\tau K^{*} p^{k+1}\right\|^{2}+\tau G(u) \\
& =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{*} p^{k+1}\right)
\end{aligned}
$$

Primal-dual hybrid gradient method

We found

$$
\begin{aligned}
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K u^{k}\right) \\
u^{k+1} & =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{*} p^{k+1}\right)
\end{aligned}
$$

One should make one (currently non intuitive) modification:
Definition (PDHG)
We will call the iteration

$$
\begin{align*}
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K \bar{u}^{k}\right) \\
u^{k+1} & =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{*} p^{k+1}\right) \tag{PDHG}\\
\bar{u}^{k+1} & =2 u^{k+1}-u^{k}
\end{align*}
$$

the Primal-Dual Hybrid Gradient Method. As we will see, it converges if $\tau \sigma<\frac{1}{\|K\|^{2}}$.

References for PDHG

PDHG is commonly referred to as the Chambolle and Pock algorithm. Nevertheless, several authors contributed to its development.

Here is a (likely incomplete) list of relevant papers:
Pock, Cremers, Bischof, Chambolle, A convex relaxation approach for computing minimal partitions.

Esser, Zhang, Chan, A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science.

Chambolle, Pock, A first-order primal-dual algorithm for convex problems with applications to imaging.

Zhang, Burger Osher, A unified primal-dual algorithm framework based on Bregman iteration.

Understanding PDHG

Why does PDHG work?

1. Sanity check: If the algorithm converges, it does so to a minimizer.
2. Why does PDHG converge? Computation on the board for

$$
\begin{align*}
& u^{k+1}=\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{*} p^{k}\right) \\
& \bar{u}^{k+1}=2 u^{k+1}-u^{k} \\
& p^{k+1}=\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K \bar{u}^{k+1}\right) . \tag{1}\\
&\binom{0}{0} \in \underbrace{\left(\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right)}_{=: T}\binom{u^{k+1}}{p^{k+1}}+\underbrace{\left(\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-K & \frac{1}{\sigma} I
\end{array}\right)}_{=: M}\binom{u^{k+1}-u^{k}}{p^{k+1}-p^{k}}
\end{align*}
$$

for the set-valued operator $T: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right) \times \mathcal{P}\left(\mathbb{R}^{n}\right)$

Fixed point iteration

We have reformulated the update rule to

$$
0 \in T z^{k+1}+M\left(z^{k+1}-z^{k}\right)
$$

for a set-valued operator T and a matrix M. Let us define the process of computing the next iterate as the resolvent

$$
\begin{equation*}
z^{k+1}=(M+T)^{-1}\left(M z^{k}\right) . \tag{CPPA}
\end{equation*}
$$

We already know an iteration of this form, the proximal point algorithm

$$
u^{k+1}=\operatorname{prox}_{E}\left(u^{k}\right)=(I+\tau \partial E)^{-1}\left(u^{k}\right)
$$

So we can use the same tools to analyze its convergence. We will call it a customized proximal point algorithm (CPPA).

Convergence of the CPPA

Remember what we did for the proximal gradient algorithm?
\rightarrow Show that prox $_{E}=(I+\tau \partial E)^{-1}$ is firmly nonexpansive, i.e.
averaged with $\alpha=1 / 2$.
We will do something similar by generalizing the crucial inequality

$$
\left\langle p_{u}-p_{v}, u-v\right\rangle \geq 0 \quad \forall u, v, p_{u} \in \partial E(u), p_{v} \in \partial E(v)
$$

Definition (Monotone Operator)

A set valued operator T is called monotone if the inequality

$$
\left\langle p_{u}-p_{v}, u-v\right\rangle \geq 0
$$

holds for all $u, v, p_{u} \in T(u)$ and $p_{v} \in T(v)$.

Convergence of the CPPA

This has the potential to show convergence of

$$
\begin{equation*}
0 \in T\left(z^{k+1}\right)+z^{k+1}-z^{k} \tag{PPA}
\end{equation*}
$$

provided that the above iteration is well-defined, i.e. the resolvent $(I+T)^{-1}(z)$ is defined for any $z \in \mathbb{R}^{n}$. This is a technical issue which can be resolved by considering maximal monotone operators. In our convex settings, this is not an issue.

Definition

The relation T is maximal monotone if there is no monotone operator that properly contains it as a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$.

In other words, if the monotone operator T is not maximal, then there is $(x, u) \notin T$ such that $T \cup\{(x, u)\}$ is monotone.

Examples of maximal monotone operators

Lemma

$E: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, then ∂E is a monotone operator. If E is closed convex and proper then ∂E is maximal monotone.

Lemma

A continuous monotone function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $\operatorname{dom}(F)=\mathbb{R}^{n}$ is maximal.

Lemma
If T is maximal monotone, then the resolvent $R_{T}=(I+\alpha T)^{-1}$ with
$\alpha>0$ and the Caley operator $C_{T}=2 R_{T}-I$ are nonexpansive functions.

Theorem (Convergence of Generalized Proximal Point

 Algorithm)Let T be a maximal monotone operator, and let there exist a z such that $0 \in T(z)$. Then the (generalized) proximal point algorithm

$$
\begin{align*}
z^{k+1} & =(T+I)^{-1}\left(z^{k}\right) \\
0 & \in T\left(z^{k+1}\right)+z^{k+1}-z^{k} \tag{2}
\end{align*}
$$

converges to a point \tilde{z} with $0 \in T(\tilde{z})$.
Proof.
If T is maximal monotone, the resolvent $R_{T}=(T+I)^{-1}$ and the Caley operator $C_{T}=2 R_{T}-I$ are nonexpansize. Since $R_{T}=\frac{1}{2} I+\frac{1}{2} C_{T}$, the resolvent R_{T} is an averaged operator and the generalized proximal point algorithm is a fixed-point iteration of an averaged operator that converges by Krasnoselskii-Mann Theorem.

Convergence of the CPPA

But we wrote the PDHG algorithm as

$$
\begin{equation*}
0 \in T\left(z^{k+1}\right)+M z^{k+1}-M z^{k}, \tag{3}
\end{equation*}
$$

i.e. with an additional matrix M.

Idea: For symmetric positive definite matrices, write $M=L^{T} L$ and rewrite (CPPA) as

$$
\begin{equation*}
0 \in L^{-T} T L^{-1}\left(\zeta^{k+1}\right)+\zeta^{k+1}-\zeta^{k}, \tag{CPPA}
\end{equation*}
$$

with $\zeta^{k}=L z^{k}$, and

$$
L^{-T} T L^{-1}(\zeta)=\left\{q \in \mathbb{R}^{n} \mid q=L^{-T} p, \quad p \in T\left(L^{-1} \zeta\right)\right\}
$$

Lemma
If T is monotone, then $L^{-T} T L^{-1}$ is monotone, too.
Proof: Exercise.

Convergence conclusions CPPA

Theorem (Convergence CPPA)
Let T be a maximally monotone operator. Let there exist a z such that $0 \in T(z)$, and let the matrix M be symmetric positive definite. Then the customized proximal point algorithm

$$
z^{k+1}=(M+T)^{-1}\left(M z^{k}\right)
$$

converges to a \hat{z} with $0 \in T(z)$.

Convergence conclusions PDHG

As the primal-dual hybrid gradient method can be rewritten (after an index shift) as

$$
\binom{0}{0} \in \underbrace{\left(\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right)}_{=: T}\binom{u^{k+1}}{p^{k+1}}+\underbrace{\left(\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-K & \frac{1}{\sigma} I
\end{array}\right)}_{=: M}\binom{u^{k+1}-u^{k}}{p^{k+1}-p^{k}} .
$$

Theorem

Convergence PDHG The operator T is maximally monotone. For $\tau \sigma<\frac{1}{\|K\|^{2}}$ the matrix M in the PDHG algorithm is positive definite. Hence, PDHG converges.
(Assuming F and G to be proper, closed, and convex, assuming there is a $u \in r i(G)$ such that $K u \in r i(F)$, and assuming the existence of a minimizer).

ROF Denoising

$$
\min P(u)=\min _{u} \frac{1}{2}\|u-f\|^{2}+\alpha\|K u\|_{2,1}
$$

with K being a discretization of the multichannel gradient operator.

ROF Denoising

We write

$$
\min _{u} P(u)=\min _{u} \max _{p} \frac{1}{2}\|u-f\|^{2}+\langle K u, p\rangle-\iota_{\|\cdot\|_{2, \infty} \leq \alpha}(p)
$$

The (PDHG) updates are

$$
\begin{aligned}
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K \bar{u}^{k}\right) \\
u^{k+1} & =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{*} p^{k+1}\right) \\
\bar{u}^{k+1} & =2 u^{k+1}-u^{k}
\end{aligned}
$$

which in this case amounts to

$$
\begin{aligned}
p^{k+1} & =\underset{p}{\operatorname{argmin}} \frac{1}{2}\left\|p-\left(p^{k}+\sigma K \bar{u}^{k}\right)\right\|^{2}+\sigma \iota_{\|\cdot\|_{2, \infty} \leq \alpha}(p) \\
u^{k+1} & =\underset{u}{\operatorname{argmin}} \frac{1}{2}\left\|u-\left(u^{k}-\tau K^{*} p^{k+1}\right)\right\|^{2}+\frac{\tau}{2}\|u-f\|^{2} \\
& =\frac{u^{k}-\tau K^{*} p^{k+1}+\tau f}{1+\tau}
\end{aligned}
$$

PDHG

$$
\bar{u}^{k+1}=2 u^{k+1}-u^{k} .
$$

TV- L^{1} Denoising

$$
\min P(u)=\min _{u}\|u-f\|_{1}+\alpha\|K u\|_{2,1}
$$

with K being a discretization of the multichannel gradient operator.

TV- L^{1} Denoising

We write

$$
\min _{u} P(u)=\min _{u} \max _{p} \frac{1}{2}\|u-f\|_{1}+\langle K u, p\rangle-\iota_{\|\cdot\|_{2, \infty} \leq \alpha}(p)
$$

The (PDHG) updates are

$$
\begin{aligned}
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K \bar{u}^{k}\right) \\
u^{k+1} & =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{*} p^{k+1}\right) \\
\bar{u}^{k+1} & =2 u^{k+1}-u^{k}
\end{aligned}
$$

which in this case amounts to
An exercise! :-)

TV-Inpainting

$$
\min P(u)=\min _{u} \iota_{f_{\mid I}}(u)+\alpha\|K u\|_{2,1}
$$

with K being a discretization of the color gradient operator, and

$$
\iota_{f_{\mid I}}(u)= \begin{cases}0 & \text { if } u_{i}=f_{i} \text { for all } i \in I \\ \infty & \text { otherwise }\end{cases}
$$

TV-Inpainting

We write

$$
\min _{u} P(u)=\min _{u} \max _{p} \iota_{f_{\mid I}}(u)+\langle K u, p\rangle-\iota_{\|\cdot\|_{2, \infty} \leq \alpha}(p) .
$$

The (PDHG) updates are

$$
\begin{aligned}
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K \bar{u}^{k}\right) \\
u^{k+1} & =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{*} p^{k+1}\right), \\
\Rightarrow u_{i}^{k+1} & = \begin{cases}f_{i} & \text { if } i \in I, \\
\left(u^{k}-\tau K^{*} p^{k+1}\right)_{i} & \text { otherwise. }\end{cases} \\
\bar{u}^{k+1} & =2 u^{k+1}-u^{k} .
\end{aligned}
$$

TV-Deblurring

$$
\min P(u)=\min _{u} \frac{1}{2}\|A u-f\|^{2}+\alpha\|K u\|_{2,1}
$$

with K being a discretization of the multichannel gradient operator, A being a convolution with a blur kernel.

TV-Deblurring - Option 1

We write

$$
\min _{u} P(u)=\min _{u} \max _{p} \frac{1}{2}\|A u-f\|^{2}+\langle K u, p\rangle-\iota_{\|\cdot\|_{2, \infty} \leq \alpha}(p)
$$

The (PDHG) updates are

$$
\begin{aligned}
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K \bar{u}^{k}\right) \\
u^{k+1} & =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{*} p^{k+1}\right) \\
\bar{u}^{k+1} & =2 u^{k+1}-u^{k}
\end{aligned}
$$

which in this case amounts to

$$
\begin{aligned}
p^{k+1} & =\underset{p}{\operatorname{argmin}} \frac{1}{2}\left\|p-\left(p^{k}+\sigma K \bar{u}^{k}\right)\right\|^{2}+\sigma \iota_{\|\cdot\|_{2, \infty} \leq \alpha}(p) \\
u^{k+1} & =\underset{u}{\operatorname{argmin}} \frac{1}{2}\left\|u-\left(u^{k}-\tau K^{*} p^{k+1}\right)\right\|^{2}+\frac{\tau}{2}\|A u-f\|^{2} \\
& =\left(I+\tau A^{*} A\right)^{-1}\left(u^{k}-\tau K^{*} p^{k+1}+\tau f\right) \\
\bar{u}^{k+1} & =2 u^{k+1}-u^{k}
\end{aligned}
$$

TV-Deblurring - Option 2

We write

$$
\begin{aligned}
& \min _{u} P(u) \\
= & \min _{u} \max _{p, q}\langle A u-f, q\rangle-\frac{1}{2}\|q\|^{2}+\langle K u, p\rangle-\iota_{\|\cdot\|_{2, \infty} \leq \alpha}(p) \\
= & \min _{u} \max _{p, q}\left\langle\binom{ A}{K} u,\binom{q}{p}\right\rangle-\langle f, q\rangle-\frac{1}{2}\|q\|^{2}-\iota_{\|\cdot\|_{2, \infty} \leq \alpha}(p)
\end{aligned}
$$

Now we have

$$
\begin{aligned}
F^{*}(p, q) & =\langle f, q\rangle+\frac{1}{2}\|q\|^{2}+\iota_{\|\cdot\|_{2, \infty} \leq \alpha}(p) \\
G(u) & =0 \\
\tilde{K} & =\binom{A}{K}
\end{aligned}
$$

TV-Deblurring - Option 2

The (PDHG) updates are

$$
\begin{aligned}
& q^{k+1}=\underset{q}{\operatorname{argmin}} \frac{1}{2}\left\|q-\left(q^{k}+\sigma A \bar{u}^{k}\right)\right\|^{2}+\sigma\langle f, q\rangle+\frac{\sigma}{2}\|q\|^{2} \\
& p^{k+1}=\underset{p}{\operatorname{argmin}} \frac{1}{2}\left\|p-\left(p^{k}+\sigma K \bar{u}^{k}\right)\right\|^{2}+\sigma \iota\|\cdot\|_{2, \infty} \leq \alpha \\
&(p) \\
& u^{k+1}=u^{k}-\tau K^{*} p^{k+1}-\tau A^{*} q^{k+1} \\
& \bar{u}^{k+1}=2 u^{k+1}-u^{k}
\end{aligned}
$$

TV-Zooming

$$
\min P(u)=\min _{u} \frac{1}{2}\|A u-f\|^{2}+\alpha\|K u\|_{2,1}
$$

with K being a discretization of the multichannel gradient operator, $A=D B$, with B being a convolution with a blur kernel, and D being a downsampling, e.g. a matrix

$$
D=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & \ldots & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots & \ldots \\
0 & 0 & 0 & 0 & 1 & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

PDHG implementation: Option 2 from the previous example.

TV-Zooming

Input data

Nearest neighbor

TV Zooming

Image Segmentation

$$
\min P(u)=\min _{u} \iota_{\Delta}(u)+\iota_{\geq 0}(u)+\langle u, f\rangle+\alpha\|K u\|_{2,1}
$$

where $K: \mathbb{R}^{n \times m \times c} \rightarrow \mathbb{R}^{n m c \times 2}$ being a discretization of the multichannel gradient operator, and

$$
\begin{aligned}
& \iota_{\Delta}(u)= \begin{cases}0 & \text { if } \sum_{k} u_{i, j, k}=1, \forall(i, j) \\
\infty & \text { else. }\end{cases} \\
& \iota_{\geq 0}(u)= \begin{cases}0 & \text { if } u_{i, j, k} \geq 0, \forall(i, j, k) \\
\infty & \text { else. }\end{cases}
\end{aligned}
$$

Image Segmentation

Upper row: data term minimization (=kmeans assignment), lower row: variational method

Image Segmentation

Option 1: We solve

$$
\min _{u} \max _{p} \iota_{\Delta}(u)+\iota_{\geq 0}(u)+\langle u, f\rangle+\langle K u, p\rangle-\iota_{\|\cdot\|_{2, \infty} \leq \alpha}(p)
$$

\rightarrow Primal proximal operator: Projection onto unit simplex.

Option 2: We solve

$$
\min _{u} \max _{p \cdot q}\langle S u-1, q\rangle+\iota \geq 0(u)+\langle u, f\rangle+\langle K u, p\rangle-\iota\|\cdot\|_{2, \infty} \leq \alpha(p) .
$$

where $(S u)_{i, j}=\sum_{k} u_{i, j}$.
\rightarrow Very simple proximal operators, but additional variable.

Final remark for applications

If you are too lazy to compute the proximity operator of F^{*}

$$
\begin{aligned}
\tilde{p} & =\operatorname{prox}_{\sigma F^{*}}(z) \\
& =\arg \min _{p} \frac{1}{2}\|p-z\|^{2}+\sigma F^{*}(p) \\
\Rightarrow 0 & =\tilde{p}-z+\sigma \tilde{u}, \quad \tilde{u} \in \partial F^{*}(\tilde{p}) \\
\Rightarrow 0 & =\tilde{u}-z / \sigma+\frac{1}{\sigma} \tilde{p}, \quad \tilde{p} \in \partial F(\tilde{u}) \\
\Rightarrow \tilde{u} & =\operatorname{prox}_{\frac{1}{\sigma} F}(z / \sigma) \\
\Rightarrow \tilde{p} & =z-\sigma \operatorname{prox}_{\frac{1}{\sigma} F}(z / \sigma)
\end{aligned}
$$

Lemma (Moreau's identity)
If you know prox $_{F}$ you also know prox $_{F^{*}}$,

$$
\operatorname{prox}_{\sigma F^{*}}(z)=z-\sigma \operatorname{prox}_{\frac{1}{\sigma} F}(z / \sigma) .
$$

Convergence rate

We have seen: PDHG works very well on problems of the form

$$
\min G(u)+F(K u),
$$

for which F and G are simple.
We get a convergence rate of

$$
\min _{j \in\{0, \ldots, k\}}\left\|\left(I+L^{-T} T L^{-1}\right)\left(\xi^{k}\right)-\xi^{k}\right\|^{2} \leq C \frac{\left\|\xi^{0}-\xi^{0}\right\|}{k+1}
$$

for $\xi^{k}=L\left(u^{k}, p^{k}\right), L$ being the matrix square-root of M, and C being a constant.

What if our problem is more friendly? E.g. what if G or F or both are strongly convex?

Either G or F^{*} is strongly convex

$$
\begin{align*}
p^{k+1} & =\operatorname{prox}_{\sigma_{k} F^{*}}\left(p^{k}+\sigma_{k} K \bar{u}^{k}\right), \\
u^{k+1} & =\operatorname{prox}_{\tau_{k} G}\left(u^{k}-\tau_{k} K^{*} p^{k+1}\right), \\
\theta_{k} & =\frac{1}{\sqrt{1+2 \gamma \tau_{k}}}, \tag{PDHG2}\\
\tau_{k+1} & =\theta_{k} \tau_{k}, \quad \sigma_{k+1}=\sigma_{k} / \theta_{k} \\
\bar{u}^{k+1} & =u^{k+1}+\theta_{k}\left(u^{k+1}-u^{k}\right) .
\end{align*}
$$

for $\tau_{0} \sigma_{0} \leq\|K\|^{2}$, and G being γ-strongly convex.
Theorem
For strongly convex G and $\epsilon>0$, there exists an N_{0} such that for any $N \geq N_{0}$:

$$
\left\|\tilde{u}-u^{N}\right\|^{2} \leq \frac{1+\epsilon}{\gamma^{2} N^{2}}\left(\frac{\left\|\tilde{u}-u^{0}\right\|^{2}}{\tau_{0}^{2}}+\|K\|^{2}\left\|\tilde{p}-p^{0}\right\|^{2}\right)
$$

Discussion of the convergence orders

If part of the energy is L smooth, the gradient methods obtain linear convergence on strongly convex energies.

As L-smoothness of the primal corresponds to $1 / L$-strong convexity of the convex conjugate. It is natural to ask: what can we do if we additionally assume F to be L-smooth, i.e., assume F^{*} to be strongly convex?

Two strongly convex functions

Consider

$$
\begin{align*}
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K \bar{u}^{k}\right) \\
u^{k+1} & =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{*} p^{k+1}\right) \tag{PDHG3}\\
\bar{u}^{k+1} & =u^{k+1}+\theta\left(u^{k+1}-u^{k}\right)
\end{align*}
$$

Theorem (Linear convergence of strongly convex functions) For $\mu \leq 2 \sqrt{\gamma \delta} /\|K\|, \tau=\mu /(2 \gamma), \sigma=\mu /(2 \delta), \theta \in[1 /(1+\mu), 1], G$ being γ-strongly convex and F^{*} being δ-strongly convex, there exists $\omega<1$, such that the iterates of (PDHG3) meet

$$
\gamma\left\|u^{N}-\tilde{u}\right\|^{2}+(1-\omega) \delta\left\|p^{N}-\tilde{p}\right\|^{2} \leq \omega^{N}\left(\gamma\left\|u^{0}-\tilde{u}\right\|^{2}+\delta\left\|p^{0}-\tilde{p}\right\|^{2}\right) .
$$

Generic form

Remember the optimality conditions of the saddle point formulation

$$
\min _{u} \max _{p} G(u)+\langle K u, p\rangle-F^{*}(p)
$$

were

$$
\binom{0}{0} \in\left(\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right)\binom{\hat{u}}{\hat{p}} .
$$

We could not compute (\hat{u}, \hat{p}) directly. Therefore,

$$
\binom{0}{0} \in\left(\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right)\binom{u^{k+1}}{p^{K+1}}+\underbrace{\left(\begin{array}{ll}
M_{1} & M_{3} \\
M_{4} & M_{2}
\end{array}\right)}_{=: M}\binom{u^{k+1}-u^{k}}{p^{K+1}-p^{k}}
$$

such that
M is symmetric, i.e. $M_{3}=\left(M_{4}\right)^{T}$,
sequential updates are possible, i.e. $M_{3}=-K^{T}$, or $M_{4}=K$.

Diagonal M_{1} and M_{2}

Sticking to $M_{3}=-K^{T}$ leads to

$$
\binom{0}{0} \in\left(\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right)\binom{u^{k+1}}{p^{K+1}}+\underbrace{\left(\begin{array}{cc}
M_{1} & -K^{T} \\
-K & M_{2}
\end{array}\right)}_{=: M}\binom{u^{k+1}-u^{k}}{p^{K+1}-p^{k}} .
$$

Only remaining requirement: M should be positive definite!
In PDHG we chose $M_{1}=\frac{1}{\tau} I, M_{2}=\frac{1}{\sigma} I$ for simplicity.
In many cases, e.g., for separable F^{*} and G, the updates remain easy to compute if M_{1} and M_{2} are diagonal.
Theorem
Let $\alpha \in[0,2], M_{1}=\operatorname{diag}\left(m_{j}^{1}\right)$ and $M_{2}=\operatorname{diag}\left(m_{i}^{2}\right)$ with

$$
m_{j}^{1}>\sum_{i}\left|K_{i, j}\right|^{2-\alpha}, \quad m_{i}^{2}>\sum_{j}\left|K_{i, j}\right|^{\alpha}
$$

Then M is positive definite.

Some remarks

Regarding the choice of M_{1} and M_{2} :
It does not influence the convergence rate.
It is an active field of research to understand its influence on constants in the convergence rates.

It can make a huge difference in practice!!
Typically, the practical convergence speed improves the more information about K is included in M_{1}, M_{2}.

The latter motivates yet a different and vastly popular algorithm, the alternating direction method of multipliers (ADMM).

