
Organization and
Introduction

Organization

Why Convex
Optimization

Overview

from 22.10.2017, slide 1/ 23

Chapter 0
Organization and Introduction
Convex Optimization for Computer Vision and Machine
Learning
WS 2017/2018

Virginia Estellers, Emanuel Laude
Computer Vision Group

Faculty of Informatics
Technical University of Munich



Organization and
Introduction

Organization

Why Convex
Optimization

Overview

from 22.10.2017, slide 2/ 23

Organization



Organization and
Introduction

Organization

Why Convex
Optimization

Overview

from 22.10.2017, slide 3/ 23

Organization

Weekly: 2-hour lecture (Virginia), 2-hour tutorial (Emanuel)

Lecture: Starts at quarter past. Short break in between

Course material ( password: cvxws17)
https://vision.in.tum.de/teaching/ws2017/in2330

Lectures based on the course created by M. Moeller in 2016

Office hours: please write us an email
• Virginia’s office 02.09.037
• Emanuel’s office 02.09.039

Assessment: weekly exercise + written/oral final exam

https://vision.in.tum.de/teaching/ws2017/in2330
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Exercises

Exercise sheets will be posted and collected on Monday (you
have a week for each sheet). Solutions will be discussed on
Friday

Theoretical and programming (Matlab) problems

Exercises in groups of 1 or 2. Copied solutions get 0 points

60% of exercise points adds 0.3 to your final exam (above 4.0)
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Interactions

Please don’t be shy to ask questions
• They make the course more interesting
• They adapt the content to your background and interests

Please don’t be shy to email us
• with suggestions or questions about blurry topics
• we will clarify topics that you found confusing
• we will adapt the exercises to help you understand them
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Course Requirements

Necessary
• Basic background in Analysis
• Background in linear Algebra
• Basic Numerical Programming (Matlab)

Useful
• Image processing, computer vision, machine learning

Computer Vision I and II: Variational Methods, Multiple View
Geometry, Machine Learning for Robotics and Computer Vision

• Numerical Optimization
Numerisches Programmieren
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Optimization Problems

Given E : S ⊂ Rn → R, we want to find û such that

û ∈ arg min
u

E(u) s.t. u ∈ C (1)

where
u is the optimization variable
C is the constraint set
E is the objective or energy function

We can only solve1 (1) for a subset of problems
• least-squares problem minu ‖Au − b‖2 → u = (AT A)−1AT b
• linear program: no analytic solution, simplex algorithm
• convex problem: guarantees for existence/uniqueness

solution

1no restriction to local minima or exhaustive search strategies
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Why Convex Optimization

û ∈ arg min
u

E(u) s.t. u ∈ C

where C is a convex set and E is a convex function

• converge to local minima of nonconvex functions raises
the question whether the model or the minimum are wrong

• sequential convex optimization of nonconvex problems
(linearization or majorization)
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Optimization algorithms

To construct iterates efficiently, we exploit the structure of E/C

û ∈ arg min
u

E(u) s.t. u ∈ C

In this course, the energy function and the constraints define a
computer vision or machine learning model

• robust to noise and outliers in the data
• regular: generalize well, do not overfit the training data
• sparse: explain the data with as few variables as possible

This usually results in large nonsmooth optimization problems



Organization and
Introduction

Organization

Why Convex
Optimization

Overview

from 22.10.2017, slide 11/ 23

Denoising

min
u
‖u − f‖1 + α

∫
Ω

|∇u(x)| dx
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Image deblurring

arg min
u
‖k ∗ u − f‖2

2 + α

∫
Ω

|∇u(x)| dx
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Surface Reconstruction

Reconstruct an implicit surface ∂M = {x : χ(x) = 0} from an
oriented point cloud {(xi ,Vi)}i=0..N

min
u

N∑
i=0

αχ2(xi) + β‖|Vi −∇χ(xi)‖2 +

∫
Ω

‖Hu(x)‖2 dx
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Stereo Matching
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Stereo Matching

Convexification of min
v

∫
Ω

|f 1(x + v(x))− f 2(x)|+ α|∇v(x)| dx
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Machine Learning Framework

Find the parameters (weights) P of the model N (·,P) that
explains the training examples {(xi , yi)}N

i=0

Example taken from http://cs.stanford.edu/people/karpathy/deepimagesent/.

Optimization problem: minP
∑

i L(N (xi ,P), yi).

http://cs.stanford.edu/people/karpathy/deepimagesent/
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Common Machine Learning Loss Functions

Linear regression minw ‖Xw − y‖2

Binary labels
• SVM loss: minw

∑
k [1− yk xT

k w ]+

• Binary logistic loss: minw
∑

k log(1 + exp(−yk xT
k w))

Example taken from

https://people.eecs.berkeley.edu/˜jordan/courses/294-fall09/lectures/optimization/slides.pdf

https://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/optimization/slides.pdf
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Lecture overview

Chapter 1: Mathematical basics and convex analysis

Basics of multivariable calculus and linear algebra:
• Open, closed, bounded and compact sets
• Continuity of functions f : Rn → Rm

• Differentiability of functions f : Rn → Rm, chain rule
• Linear operators in matrix form, eigenvectors,

semi-definiteness

Basics of convex analysis:
• Convex sets
• Convex extended real valued functions in Rn

• Existence of minimizers
• Optimality conditions and subdifferential calculus

Goal: Everyone knows all necessary tools to follow the lecture!
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Lecture overview

Chapter 2: Gradient based methods

Optimization algorithms based on (generalized) gradient
methods

• Gradient descent
• Gradient projection
• Proximal gradient method
• Subgradient descent
• Convergence analysis

Goal: Establish basic minimization strategies based on energy
descent methods most suitable for (partly) smooth energy
functions.



Organization and
Introduction

Organization

Why Convex
Optimization

Overview

from 22.10.2017, slide 20/ 23

Lecture overview

Chapter 3: Convex conjugation and duality

• Primal and dual formulation of a problem
• Convex conjugate
• Saddle point problems
• Optimality conditions

Goal: Increase the number of tools to reformulate and analyze
more complex convex minimization problems.
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Lecture overview

Chapter 4: Primal-dual optimization schemes

• Concept: Averaged operators
• Primal-dual hybrid gradient method
• Proximal point algorithm
• Douglas-Rachford splitting
• Alternating directions method of multipliers
• Convergence analysis based on maximally monotone

operators
• Primal and dual residuals. Choice of primal and dual

stepsizes

Goal: Learn about state-of-the-art first order optimization
methods and their relations.

These are the algorithms used in most publications on
variational method in imaging and computer vision
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Lecture overview

Chapter 5: To be defined by your interests

• Majorize-Minimize algorithm
• Other splitting algorithms: Peaceman-Rachford, etc.
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Example of Linear Program: Profit maximization

A company wants to maximize its profit under certain
contraints given by the availability of resources.

• A company has two products.
• Producing the amount x of product 1 requires

• using machine A for 5x units of time,
• using machine B for 2x units of time.

• Producing the amount x of product 2 requires
• using machine A for 1x units of time,
• using machine B for 4x units of time.

• Product 1 sells for twice as much as product 2.
• The cost of a time unit of machine A is half the cost of a

time unit of machine B.
• Machine A is available for 160 units of time.
• Machine B is available for 240 units of time.

How much of product 1 and 2 should the company produce in
order to maximize its profit?


